User Manual for glossaries.sty v4.59

Nicola L.C. Talbot
dickimaw—-books.com/contact

2025-04-11

This document is also available as HTML (glossaries—user.html).
Abstract

The glossaries package provides a means to define terms or acronyms or symbols
that can be referenced within your document. Sorted lists with collated locations
can be generated either using TEX or using a supplementary indexing application.
Sample documents are provided with the glossaries package. These are listed in
§18.

[glossaries—extra

Additional features not provided here may be available through the extension package
glossaries—extra which, if required, needs to be installed separately. New features will
be added to glossaries—extra. Versions of the glossaries package after v4.21 will mostly
be just bug fixes or minor maintenance. The most significant updates to the glossaries
package since then is version 4.50, which involved the integration of mfirstuc v2.08 and
the phasing out the use of the now deprecated textcase package, and version 4.55, which
involved the integration of datatool—base v3.0.

Note that glossaries—extra provides an extra indexing option (bib2gls) which isn’t
available with just the base glossaries package.

J

If you require multilingual support you must also install the relevant language module. Each
language module is called glossaries—(language), where (language) is the root language
name. For example, glossaries—frenchorglossaries—german. If alanguage
module is required, the glossaries package will automatically try to load it and will give a warning
if the module isn’t found. See §1.5 for further details. If there isn’t any support available for your
language, use the nol angwarn package option to suppress the warning and provide your own
translations. (For example, use the t it 1e key in \printglossary.)

http://www.dickimaw-books.com/contact
glossaries-user.html

(i]

=
Documents have wide-ranging styles when it comes to presenting glossaries or lists of

terms or notation. People have their own preferences and to a large extent this is deter-
mined by the kind of information that needs to go in the glossary. They may just have
symbols with terse descriptions or they may have long technical words with complicated
descriptions. The glossaries package is flexible enough to accommodate such varied re-
quirements, but this flexibility comes at a price: a big manual.

« If you're freaking out at the size of this manual, start with “The glossaries package:
a guide for beginners” (glossariesbegin.pdf). You should find it in the same
directory as this document or try

texdoc glossariesbegin \

Once you've got to grips with the basics, then come back to this manual to find out how
to adjust the settings.

The glossaries bundle includes the following documentation:

The glossaries package: a guide for beginners (glossariesbegin.pdf)
If you want some brief information and examples to get you going, start with the guide for
beginners.
User Manual for glossaries.sty (glossaries—-user.pdf)
This document is the manual for the glossaries package and is divided into two parts:
Part I is the user guide that describes all available commands and options with examples.
Part II has alphabetical summaries of those commands and options for quick reference.
Documented Code for glossaries (glossaries—code.pdf)
Advanced users wishing to know more about the inner workings of all the packages pro-
vided in the glossaries bundle should read “Documented Code for glossaries v4.59”.
CHANGES
Change log.

README .md

Package summary.

Depends.txt

List of all packages unconditionally required by glossaries. Other unlisted packages may
be required under certain circumstances. For help on installing packages see, for example,
How do I update my TgX distribution?! or (for Linux users) Updating TgX on Linux.?

'tex.stackexchange.com/questions/55437
’tex.stackexchange.com/questions/14925

https://www.tug.org/texdoc/
glossaries-code.pdf
CHANGES
README.md
Depends.txt
https://tex.stackexchange.com/questions/55437
https://tex.stackexchange.com/questions/14925
http://tex.stackexchange.com/questions/55437
http://tex.stackexchange.com/questions/14925

Related resources:
» glossaries-extra and bib2gls: An Introductory Guide.?
* glossaries FAQ*
* glossaries gallery®
« a summary of all glossary styles provided by glossaries and glossaries-extra®

* glossaries performance’ (comparing document build times for the different options pro-
vided by glossaries and glossaries-extra).

* Using LaTeX to Write a PhD Thesis® (chapter 6).

* Incorporating makeglossaries ormakeglossaries—liteorbib2gls
into the document build’

* The glossaries-extra package'”
e bib2gls!!
[i

=
If you use hyperref and glossaries, you must load hyperref first (although, in general,

hyperref should be loaded after other packages).

‘mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
*dickimaw-books.com/faq.php?category=glossaries
dickimaw-books.com/gallery/#glossaries
®dickimaw-books.com/gallery/glossaries—styles/
’dickimaw-books.com/gallery/glossaries—performance.shtml
8dickimaw-books.com/latex/thesis/
dickimaw-books.com/latex/buildglossaries/
Yctan.org/pkg/glossaries—extra

ctan.org/pkg/bib2gls

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls

Contents

List of Tables Vi

List of Examples vii

. User Guide 1
1. Introduction 2
I.1. Rollback 7
1.2. Integrating Other Packages and Known Issues 8
1.3, Indexing Options i e 8
1.3.1. Option 1 (“noidx™) 9

1.3.2. Option2 (makeindex) 14

1.33. Option3 (x1indy) v v v vt 18

1.3.4. Option4 (bib2gls) e 23

1.3.5. Option 5 (“unsrt™) 28

1.3.6. Option 6 (“standalone™) 30

1.4. Dummy Entries for Testing 38
1.5. Multi-Lingual Support 45
1.5.1. Changing the Fixed Names 55

1.5.2. Creating a New Language Module 58

1.6. Generating the Associated Glossary Files 64
1.6.1. Using the makeglossariesPerlScript. 68

1.6.2. Using the makeglossaries—1lite LuaScript 72

1.6.3. Using xindy explicitly (Option3) 75

1.6.4. Using makeindex explicitly (Option2) 76

1.7. Note to Front-End and Script Developers 77
1.7.1. Makelndexand Xindy 77

1.7.2. EntryLabels 79

1.73. Bib2Gls 79

2. Package Options 81
2.1. General Options L 81
2.2. Sectioning, Headings and TOC Options 89
2.3. Glossary Appearance Options 94
24, Indexing Options i e 103
2.5, Sorting Options e e e 107

4.1.

Contents

2.6. Glossary Type Options o it
2.7. Acronym and Abbreviation Options
2.8. Deprecated Acronym Style Options
2.9. OtherOptions e
2.10. Setting Options After the Package is Loaded
Setting Up
3.1, Option1 . ..o e
32. Options2and3 e
Defining Glossary Entries

Plurals
4.2. Other Grammatical Constructs
4.3. Additional Keys

4.4.
45.

4.6.
4.7.
4.8.

43.1. DocumentKeys
43.2. Storage Keys
Expansion
Sub-Entries
45.1. Hierarchy
4.5.2. Homographs
Loading Entries FromaFile
Moving Entries to Another Glossary
Drawbacks With Defining Entries in the Document Environment
4.8.1. Technical Issues
4.8.2. Good Practice Issues

Referencing Entries in the Document

5.1

5.2.

6.1.
6.2.

6.3.
6.4.

Links to Glossary Entries
S..1. Options L e
5.1.2. The \ gl s-Like Commands (First Use Flag Queried)
5.1.3. The \glstext-Like Commands (First Use Flag Not Queried) . . .
5.1.4. Changing the Format of the \gls-like Link Text
5.1.5. Hooks oo
5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries

Using Glossary Terms Without Indexing

. Acronyms and Other Abbreviations

Displaying the Long, Short and Full Forms (Independent of First Use)
Changing the Acronym Style,
6.2.1. Predefined Acronym Styles,
6.2.2. Defining A Custom Acronym Style
Displaying the List of Acronyms
Upgrading From the glossary Package

i

133
133
133

137
147
149
150
150
152
158
160
161
162
163
166
167
167
168

169
169
172
174
178
184
189
190
193

10.

11.

12.

13.

14.

Contents

Unsetting and Resetting Entry Flags 237
7.1. Counting the Number of Times an Entry has been Used (First Use Flag Unset) 241
Displaying a Glossary 248
8.1. \print(..)glossaryOptions. 252
82. GlossaryMarkup 257
Defining New Glossaries 264
Adding an Entry to the Glossary Without Generating Text 267
Cross-Referencing Entries 272
11.1. Customising Cross-Reference Text 275
Number Lists 278
12.1. Encap Values (Location Formats) 279
12.2. Range Formations 284
1230 LocationS v v v i e e e e e e e e e 286
12.4. PagePrecedence 289
12.5. Problematic Locations 289
12.6. TIterating Over Locations 302
Glossary Styles 305
13.1. Predefined Styles 307
13.1.1. ListStyles 310
13.1.2. Longtable Styles 313
13.1.3. Longtable Styles (Ragged Right) 316
13.1.4. Longtable Styles (booktabs) 319
13.1.5. Supertabular Styles 321
13.1.6. Supertabular Styles (Ragged Right) 324
13.1.7. Tree-Like Styles 327
13.1.8. Multicols Style 377
13.1.9. In-Line Style 380
13.2. Defining your own glossary style 383
13.2.1. Commands For Use in Glossary Styles 385
13.2.2. Hyper Group Navigation 388
13.2.3. Glossary Style Commands 390
Xindy (Option 3) 397
14.1. Required Styles e 398
14.2. Language and Encodings 399
14.3. Locations and Number lists 400
14.4. Glossary Groups v v i v i e e e e 410

1l

Contents

15. Utilities
15.1. hyperref
15.2. Case-Changing i e e
1530 LOoOpS . . . o o e e
15.4. Conditionals
15.5. Measuring i e e
15.6. Fetching and Updating the Valueof aField

16. Prefixes or Determiners

17. Accessibility Support
17.1. Accessibility Keys
17.2. Incorporating Accessibility Support,
17.3. Incorporating the Access Field Values
17.4. Obtaining the Access Field Values
17.5. Developer’'s Note i e

18. Sample Documents
18.1. Basic e
18.2. Acronymsand FirstUse,
18.3. Non-Page Locations
18.4. Multiple Glossaries e
18.5. Sorting e
18.6. ChildEntries
18.7. Cross-Referencing
188. CustomKeys.
189. Xindy (Option3). e
18.10. No Indexing Application (Option 1)
18.11. Other o e

19. Troubleshooting

Il. Summaries and Index

Symbols

Terms

Glossary Entry Keys Summary

\Gls-Like and \Glstext-Like Options Summary

\print(...)glossary Options Summary

v

412
412
414
417
418
426
427

430

438
438
441
443
446
448

449
449
456
474
485
498
505
520
523
528
539
541

558

559
560
561
568
576

579

Contents

Acronym Style Summary

Glossary Styles Summary

Command Summary

Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:

Environment Summary

Package Option Summary

Index

583

586

601
601
602
609
610
611
614
614
616
616
623
686
698
700
705
705
707
710
710
714
714
718
719
719

720

721

732

List of Tables

1.1. Glossary Options: Prosand Cons 10
1.2, Customised Text 56
1.3. Commands and package options that have no effect when using xindy or
makeindexexplicitly L 68
4.1. KeytoField Mappings 159
6.1. Synonyms provided by the shortcuts package option 208
6.2. The effect of using xspace with \oldacronym 236
12.1. Predefined Hyperlinked Location Formats 280
13.1. Glossary Styles e 308
13.2. Multicolumn Styles L 380

vi

List of Examples

If an example shows the icon Q® then the source code is embedded in the PDF as an attachment.
If your PDF viewer supports attachments, you can extract the self-contained example file to
try it out for yourself. Alternatively, you can click on the download icon &= which will try
downloading the example source code from your closest CTAN mirror, but make sure that this
user manual matches the version on CTAN first. You can also try using:

texdoc -1 glossaries-user-example(nnn) \

where (nnn) is the example number zero-padded to three digits to find out if the example files
are installed on your device.

XA R D=

[N T NS T NS T NG T NG T NG T S e e e e T e T e T e T)
QRO =SS0 R NS E BSOS

Simple document withno glossary 3
Simple document with unsorted glossaries 5
Simple document that uses TgX to sort entries 12
Simple document that uses makeindex tosortentries 15
Simple document that uses x1ndy tosortentries 20
Simple document that uses b1b2gls tosortentries 25
Simple document with an unsorted list of all defined entries 29
Simple document with standalone entries 32
UTF-8and xindy o s 50
UTF-8and bib2gls 53
Mixing Alphabetical and Order of Definition Sorting 111
Customizing Standard Sort (Options2o0r3) 112
Defining Custom Keys 151
Defining Custom Storage Key (Acronyms and Initialisms) 152
Defining Custom Storage Key (Acronyms and Non-Acronyms with Descriptions) 156
Hierarchical Divisions — Greek and Roman Mathematical Symbols 161
Loading Entries from Another File 164
Custom Entry Displayin Text 188
Custom Format for Particular Glossary 189
First Use With Hyperlinked Footnote Description 190
Suppressing Hyperlinks on First Use Just For Acronyms 191
Only Hyperlink in Text Mode Not MathMode 191
One Hyper Link Per Entry Per Chapter 192
Simple document with acronyms, 200
Defining and Using an Acronym 203

vii

https://www.tug.org/texdoc/

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

List of Examples

Defining and Using an Acronym (Rollback) 211
Small-Caps Acronym o i e e 212
Adapting a Predefined Acronym Style 215
Defining a Custom Acronym Style 221
Italic and Upright Abbreviations 229
Abbreviations with Full Stops (Periods) 232
Don’t index entries that are onlyusedonce 247
Switch to Two Column Mode for Glossary 261
Dual Entries 270
Changing the Font Used to Display Entry Names in the Glossary 306
The tree” style: default layout 330
The tree” style: omit the child name and symbol 331
The tree” style: aligning names and symbols for each level 333
The tree” style: aligning descriptions 334
The tree” style: default layout (multi-paragraph and hierarchical entries) 336
The tree* style: default layout (multi-paragraph and hierarchical entries with

hanging indentation) 338
The tree* styleelements 342
The tree” style: fixed width name and symbol 344
The tree” style: combined name and symbol fixed width 346
The tree” style: inner and outer name and symbol fixed width 348
Creating a completelynewstyle 392
Creating a new glossary style based on an existingstyle 394
Example: creating a glossary style that uses the userl, ..., user6keys .. 394
Custom Font for Displaying a Location 402
Custom Numbering System for Locations 403
LocationsasDice 404
Locations as Words not Digits 406
Defining Determiners 430
Using Prefixes 434
Adding Determiner to Glossary Style 435

viil

Part I.

User Guide

1. Introduction

\usepackage [(options)] {glossaries}

The glossaries package is provided to assist generating lists of terms, symbols or acronyms.
For convenience, these lists are all referred to as glossaries in this manual. The terms, symbols
and acronyms are collectively referred to as glossary entries.

The package has a certain amount of flexibility, allowing the user to customize the format
of the glossary and define multiple glossaries. It also supports glossary styles that include an
associated symbol (in addition to a name and description) for each glossary entry.

There is provision for loading a database of glossary entries. Only those entries indexed in
the document will be displayed in the glossary. (Unless you use Option 5, which doesn’t use any
indexing but will instead list all defined entries in order of definition.)

It’s not necessary to actually have a glossary in the document. You may be interested in using
this package just as means to consistently format certain types of terms, such as acronyms, or
you may prefer to have descriptions scattered about the document and be able to easily link to
the relevant description (Option 6).

Example 1 demonstrates a basic document without a glossary. For simplicity, the article class
is used and the only package loaded is glossaries. Note that the terms must be defined before
they can be referenced in the document:

\documentclass{article}
\usepackage [

sort=none % no sorting or indexing required

]

{glossaries}

\newglossaryentry
{cafe}l% label
{% definition:
name={café},
description={small restaurant selling
refreshments}

}

Eill

1. Introduction

\setacronymstyle{long—short}
\newacronym

{html}% label

{HTML}% short form

{hypertext markup language}% long form

\newglossaryentry
{pi}% label
{% definition:
name={\ensuremath{\pi}},
description={Archimedes' Constant}

}

\newglossaryentry
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}
}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance}
(\glsentrydesc{distance})

is measured in \glssymbol{distance}.
\end{document }

(This is a trivial example. For a real document I recommend you use siunitx for units.)

4 Example 1: Simple document with no glossary N\EFIE

First use: café, hypertext markup language (HTML), w. Next use: café,

HTML, 7.
Distance (the length between two points) is measured in m.

The glossaries—extra package, which is distributed as a separate bundle, extends the capa-
bilities of the glossaries package. The simplest document with a glossary can be created with
glossaries—extra (which internally loads the glossaries package). Example 2 demonstrates this:

glossaries
—extra

% This file is embedded in glossaries-user.pdf
% Example 1 Simple document with no glossary
% Label: "ex:simplenogloss"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[
 sort=none % no sorting or indexing required
] {glossaries}

\newglossaryentry
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setacronymstyle{long-short} \newacronym
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form

\newglossaryentry
{pi}% label
 {% definition:
 name={\ensuremath{\pi}},
 description={Archimedes' Constant}
}

% This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry
 {distance}% label
 {% definition:
 name={distance},
 description={the length between two points},
 symbol={m}
}
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in \glssymbol{distance}.
\end{document}

Nicola Talbot
Simple document with no glossary (source code)
Example document that defines some glossary entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.pdf

1. Introduction

\documentclass{article}

\usepackage [

sort=none, $ no sorting or indexing required
abbreviations, % create list of abbreviations
symbols, $ create list of symbols

[}

postdot, % append a full stop after the descriptions
stylemods, style=index % set the glossary style
]{glossaries—extra}
\newglossaryentry % glossaries.sty
{cafe}% label
{% definition:
name={café},
description={small restaurant selling
refreshments}

}

\setabbreviationstyle{long—-short}

(¢}

% glossaries—extra.sty
\newabbreviation % glossaries—-extra.sty
{html}% label
{HTML}% short form
{hypertext markup language}s long form
% requires glossaries-extra.sty 'symbols' option
\glsxtrnewsymbol
[description={Archimedes' constant}]%$ options
{pi}% label
{\ensuremath{\pi}}% symbol
\newglossaryentry % glossaries.sty
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}
}

\begin{document }
First use: \gls{cafe}, \gls{html}, \gls{pi}.

1. Introduction

Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries
\end{document}

£ Example 2: Simple document with unsorted glossaries \EEE

First use: café, hypertext markup language (HTML), 7. Next use: café,
HTML, .

Distance is measured in m.

Glossary

café small restaurant selling refreshments.

distance (m) the length between two points.

Symbols

7 Archimedes’ constant.

Abbreviations

HTML hypertext markup language.

Note the difference in the way the abbreviation (HTML) and symbol (7) are defined in the
two above examples. The abbreviations, postdot and stylemods options are
specific to glossaries—extra. Other options are passed to the base glossaries package.

[glossaries—extra

In this user manual, commands and options displayed in tan, such as \new-—
abbreviation and stylemods, are only available with the glossaries—extra
package. There are also some commands and options (such as \makeglossaries
and symbols) that are provided by the base glossaries package but are redefined by
the glossaries—extra package. See the glossaries—extra user manual for further details of
those commands.

J

One of the strengths of the glossaries package is its flexibility, however the drawback of
this is the necessity of having a large manual that covers all the various settings. If you are

% This file is embedded in glossaries-user.pdf
% Example 2 Simple document with unsorted glossaries
% Label: "ex:simpleunsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[sort=none,% no sorting or indexing required
 abbreviations,% create list of abbreviations
 symbols,% create list of symbols
 postdot, % append a full stop after the descriptions
 stylemods,style=index % set the default glossary style
]{glossaries-extra}

\newglossaryentry % glossaries.sty
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setabbreviationstyle{long-short}% glossaries-extra.sty
\newabbreviation % glossaries-extra.sty
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form
 % requires glossaries-extra.sty 'symbols' option
 \glsxtrnewsymbol [description={Archimedes' constant}]% options
 {pi}% label
 {\ensuremath{\pi}}% symbol
 % This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry % glossaries.sty
{distance}% label
 {% definition:
 name={distance}, description={the length between two points}, symbol={m} }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries

\end{document}

Nicola Talbot
Simple document with unsorted glossaries (source code)
Example document that defines some glossary entries, references them in the text, and displays three simple unsorted glossaries. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.pdf

1. Introduction

daunted by the size of the manual, try starting off with the much shorter guide for beginners
(glossariesbegin.pdf).

[i
=
There’s a common misconception that you have to have Perl installed in order to use the

glossaries package. Perl is not a requirement (as demonstrated by the above examples).
It’s only required if you want to use x1ndy or makeglossaries. Perl is used by
other TgX-related applications, such as 1 at exmk, so you may already have it installed. If
you want touse bib2gls, you will need to have the Java runtime environment installed.
Java is used by other TgX-related applications, such as arara and JabRef, so you may
already have it installed.

J

This user manual uses the glossaries—extra package with bib2gls (Option 4). For exam-
ple, when viewing the PDF version of this document in a hyperlinked-enabled PDF viewer (such
as Adobe Reader or Okular) if you click on the word “indexing” you’ll be taken to the entry in the
main glossary where there’s a brief description of the term. This is the way that the glossaries
mechanism works. An indexing application (b1b2gls in this case) is used to generate the
sorted list of terms. The indexing applications are CLI tools, which means they can be run di-
rectly from a command prompt or terminal, or can be integrated into some text editors, or you
can use a build tool such as arara to run them.

In addition to standard glossaries, this document has “standalone” definitions (Option 6). For
example, if you click on the command \ gl s, the hyperlink will take you to the main part of
the document where the command is described. The index and summaries are also glossaries.
The technique used is too complicated to describe in this manual, but an example can be found
in “bib2gls: Standalone entries and repeated lists (a little book of poisons)” TUGboat, Vol-
ume 43 (2022), No. 1.

Neither of the above two examples require an indexing application. The first is just using the
glossaries package for consistent formatting, and there is no list. The second has lists but they
are unsorted (see Option 5).

The remainder of this introductory section covers the following:

* §1.3 lists the available indexing options.

§1.4 lists the files provided that contain dummy glossary entries which may be used for
testing.

§1.5 provides information for users who wish to write in a language other than English.

§1.6 describes how to use an indexing application to create the sorted glossaries for your
document (Options 2 or 3).

In addition to the examples provided in this document, there are some sample documents
provided with the glossaries package. They are described in §18.

https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf
https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf

1. Introduction

1.1. Rollback
[i]

|
Rollback provides a useful way of reverting back to an earlier release if there’s a problem

with a new version. However, the further away the rollback date is from the current LaTeX
kernel, the more likely that incompatibilities will occur. If you have historic documents
that you need to compile, consider using the historic TgX Live Docker images. (See, for
example, Legacy Documents and TEX Live Docker Images.¢)

¢dickimaw-books.com/blog/legacy-documents—-and-tex-live-docker-images

The following rollback releases are available:

e Version 4.54 (2024-04-03):

B

[\usepackage{glossaries} [=v4.54]

This version is the last version that doesn’t test for the newer datatool—base commands that
may now be used to sort glossaries with \printnoidxglossary. It will always
use the older, slower method.

e Version 4.52 (2022-11-03):

B

[\usepackage{glossaries} [=v4.52]

This is the last version that uses an internal comma-separated list for the hyper group
information in glossary—hypernav. Version 4.53 has switched to using a sequence.

* Version 4.49 (2021-11-01):

\usepackage{glossaries} [=v4.49]

B

Note that this should also rollback mfirstuc to version 2.07 if you have a later version
installed.

e Version 4.46 (2020-03-19):

B

[\usepackage{glossaries} [=v4.46]

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

If you rollback using latexrelease to an earlier date, then you will need to specify v4.46 for
glossaries as there are no earlier rollback versions available. You may want to consider using one
of the historic TgX Live Docker images instead. See, for example, Legacy Documents and TeX
Live Docker Images.!

1.2. Integrating Other Packages and Known Issues

If you use hyperref and glossaries, you must load hyperref first (although, in general, hyperref
should be loaded after other packages).

Occasionally you may find that certain packages need to be loaded affer packages that are
required by glossaries but need to also be loaded before glossaries. For example, a package
(X) might need to be loaded after amsgen but before hyperref (which needs to be loaded before
glossaries). In which case, load the required package first (for example, amsgen), then (X), and
finally load glossaries.

\usepackage{amsgen}% load before (X)
\usepackage{(X)}% must be loaded after amsgen
\usepackage{hyperref}% load after (X)
\usepackage{glossaries}% load after hyperref

Some packages don’t work with some glossary styles. For example, classicthesis doesn’t work
with the styles that use the description environment, such as the list style. Since this is the default
style, the glossaries package checks for classicthesis and will change the default to the index
style if it has been loaded.

Some packages conflict with a package that’s required by a glossary style style package. For
example, xtab conflicts with supertabular, which is required by glossary—super. In this case, en-
sure the problematic glossary style package isn’t loaded. For example, use the nosupe r option
and (with glossaries—extra) don’t use st ylemods=super or stylemods=all. The
glossaries package now (v4.50+) checks for xtab and will automatically implement nosuper
if it has been loaded.

The language-support is implemented using tracklang. See §1.5 for further details.

1.3. Indexing Options

The basic idea behind the glossaries package is that you first define your entries (terms, symbols
or acronyms). Then you can reference these within your document (analogous to \cite or
\ref). You can also, optionally, display a list of the entries you have referenced in your doc-
ument (the glossary). This last part, displaying the glossary, is the part that most new users find
difficult. There are three options available with the base glossaries package (Options 1 —-3). The
glossaries—extra extension package provides two extra options for lists (Options 4 and 5) as well
as an option for standalone descriptions within the document body (Option 6).

'dickimaw-books.com/blog/legacy-documents—and-tex—live—docker-images

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

An overview of Options 1 -5 is given in Table 1.1. Option 6 is omitted from the table as it
doesn’t produce a list. For a more detailed comparison of the various methods, see the glossaries
performance page.? If, for some reason, you want to know what indexing option is in effect, you
can test the expansion of:

X

\glsindexingsetting

The definition is initialised to:

\ifglsxindy xindy\else makeindex\fi

If the sort=none or sort=clear options are used, \glsindexingsetting

will be redefined to none. If \makeglossariesisused \glsindexingsetting
will be updated to either makeindex or xindy as appropriate (that is, the conditional will
no longer be part of the definition). If \makenoidxglossaries is used then \gls-
indexingsetting will be updated to noidx. This means that \glsindexing-
setting can’t be fully relied on until the start of the document environment. (If you are using
glossaries—extra v1.49+, then this command will also be updated to take the record setting
into account.)
(]
=
If you are developing a class or package that loads glossaries, I recommend that you don’t
force the user into a particular indexing method by adding an unconditional \make—
glossaries into your class or package code. Aside from forcing the user into a
particular indexing method, it means that they’re unable to use any commands that must
come before \makeglossaries (suchas \newglossary)and they can’t switch
off the indexing whilst working on a draft document. (If you are using a class or package
that has done this, pass the di sablemakeqgloss option to glossaries. For example,
via the document class options.)

J

Strictly speaking, Options 5 and 6 aren’t actually indexing options as no indexing is performed.
In the case of Option 5, all defined entries are listed in order of definition. In the case of Option 6,
the entry hypertargets and descriptions are manually inserted at appropriate points in the docu-
ment. These two options are included here for completeness and for comparison with the actual
indexing options.

1.3.1. Option 1 (“noidx”)

For alphabetical sorting, ensure you have at least version 3.0 of datatool and, where available,
datatool language support. If an older version is detected, a slower, less efficient sort method will
be used. Note that this method doesn’t form location ranges.

Example 3 demonstrates this method:

’dickimaw-books.com/gallery/glossaries—performance.shtml

=3

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

1. Introduction

Table 1.1.: Glossary Options: Pros and Cons

Option 1 2 3
Requires glossaries—extra?

Requires an external application? v v
Requires Perl? v
Requires Java?

Designed for glossaries[-extra]? x# X+
Can sort extended Latin alphabets b b 4 N/A
or non-Latin alphabets?

Efficient sort algorithm? X N/A
Can use a different sort method for Xt X N/A
each glossary?

Any problematic sort values? v v v N/A
Are entries with identical sort values X3

treated as separate unique entries?

SxKSS=»

Can automatically form ranges in b 4 b 4
the location lists?

Can have non-standard locations in b 4
the location lists?

Maximum hierarchical depth 00 3 00 00 00
(style-dependent)

\glsdisplaynumberlist b 4 b 4 b 4
reliable?

\newglossaryentry b 4 v v X v
allowed in document environment?

(Not recommended.)

Requires additional write registers? v v
Default value of false true true true¥true®
sanitizesort package option

*

fBoth makeindex and xindy are general purpose indexing applications developed
independently of glossaries and glossaries—extra.

“Localisation support may be available via datatool.

TOnly with the hybrid method provided with glossaries—extra.

SEntries with the same sort value are merged.

ORequires some setting up.

IThe locations must be set explicitly through the custom 1ocat ion field provided by
glossaries—extra.

#Unlimited but unreliable.

*Entries are defined in bib format. \newglossaryentry should not be used
explicitly.

iProvided docdef=true or docdef=restricted but not recommended.
*Provided docdef=false ordocdef=restricted.

*Irrelevant with sort=none. (The record=only option automatically switches this
on.)

10

1. Introduction

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makenoidxglossaries % use TeX to sort
\newglossaryentry{parrot }{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet } { ARPANET }
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the document preamble
with \loadglsentries (after \makenoidxglossaries). Note that six entries
have been defined but only five are referenced (indexed) in the document so only those five appear
in the glossary.

11

1. Introduction

£ Example 3: Simple document that uses TgX to sort entries \EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1

P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This uses the indexgroup style, which puts a heading at the start of each letter group. The letter
group is determined by the first character of the sort value. For a preview of all available styles,
see Gallery: Predefined Styles.> The number 1 after each description is the number list (or
location list). This is the list of locations (page numbers, in this case) where the entry was indexed.
In this example, all entries were indexed on page 1.

(@]

=
As from version 4.55, the glossaries package will check for a new command added to

datatool—base v3.0, that provides better sorting. The method is faster and works better
with UTF-8 characters. See the datatool v3.0+ documentation, in particular the sections
on localisation and on sorting lists.

J

This option doesn’t require an external indexing application but, with the default alphabetic
sorting and old versions of datatool, it’s very slow with severe limitations, particularly if the sort
value contains extended Latin characters or non-Latin characters. However, if you have both
datatool v3.0+ and datatool-english installed, and at least glossaries v4.56, then make sure you
specify the locale. For example:

3dickimaw-books.com/gallery/index.php?label=glossaries—styles

12

% This file is embedded in glossaries-user.pdf
% Example 3 Simple document that uses TeX\ to sort entries
% Label: "ex:noidx"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makenoidxglossaries % use TeX to sort
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

Nicola Talbot
Simple document that uses TeX to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.pdf
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles

1. Introduction

\usepackage[locales=en] {datatool-base}
\usepackage{glossaries}

Or:
B

\usepackage[locales=en] {glossaries}

Other languages will need to have the appropriate datatool localisation support provided. Exam-
ples are provided in the datatool manual. In general, it’s best to use xindy or bib2gls if
you need to sort terms that use an extended Latin alphabet or non-Latin alphabet.

If you have any commands that cause problems when expanding, such as \alpha, then
youmust use sanitizesort=true or change the sort method (sort=use or sort=
de f) in the package options or explicitly set the so rt key when you define the relevant entries,
as shown in the above example which has:

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}

}

[glossaries—extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-
stead of the name).

This option works best with datatool v3.0+. If using a word or letter sort, be sure to also install
the applicable datatool language file, if available. This option allows a mixture of sort methods.
(For example, sorting by word order for one glossary and order of use for another.) This option
can be problematic with hierarchical glossaries and does not form ranges in the location lists.

Summary:

1. Add

[\makenoidxglossaries

to your preamble (before you start defining your entries, as described in §4).

2. Put

13

1. Introduction

=

\printnoidxglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

=

\printnoidxglossaries

3. Run ETEX twice on your document. (As you would do to make a table of contents appear.)
For example, click twice on the “typeset” or “build” or “pdfI&TEX” button in your editor.

1.3.2. Option 2 (makeindex)
[©

=
Since ma ke index was designed for indexes, it doesn’t fully integrate with the glossaries

package, which has more complex use cases than a simple index. A better solution is
to use bib2gls which is developed alongside glossaries—extra and so provides better
integration.

Example 4 demonstrates a simple document that requires makeindex:

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makeglossaries % open indexing files
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}

14

1. Introduction

\newacronym{arpanet } {ARPANET}

{Advanced Research Projects Agency Network}
\begin{document}

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.

\printglossary

\end{document }

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries (after \makeglossaries). The result is the same as for Example 3.

N Example 4: Simple document that uses makeindex to sort entries E LR

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary

A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called makeindex to sort the entries. This application
comes with all modern TgX distributions, but it’s hard-coded for the non-extended Latin alphabet.
It can’t correctly sort accent commands (such as \ ' or \c) and fails with UTF-8 characters,
especially for any sort values that start with a UTF-8 character (as it separates the octets resulting
in an invalid file encoding). This process involves making IfTEX write the glossary information to
a temporary file which makeindex reads. Then makeindex writes a new file containing
the code to typeset the glossary. Then \printglossary reads this file in on the next run.

15

% This file is embedded in glossaries-user.pdf
% Example 4 Simple document that uses makeindex to sort entries
% Label: "ex:mkidx"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses makeindex to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.pdf

1. Introduction

(o]

= |
There are other applications that can read makeindex files, such as texindy and

xindex, but the glossaries package uses a customized ist style file (created by
\makeglossaries) that adjusts the special characters and input keyword and also
ensures that the resulting file (which is input by \printglossary) adheres to the
glossary style. If you want to use an alternative, you will need to ensure that it can honour
the settings in the 1 st file or find some way to convert the 1 st file into an equivalent
set of instructions.

J

This option works best if you want to sort entries according to the Basic Latin alphabet and
you don’t want to install Perl or Java. This method can also work with the restricted shell escape
since makeindex is considered a trusted application, which means you should be able to use
the automake=1immediate or automake=true package option provided the shell
escape hasn’t been completely disabled.

This method can form ranges in the number list but only accepts limited number formats:
\arabic, \roman, \Roman, \alph and \Alph.

This option does not allow a mixture of sort methods. All glossaries must be sorted according
to the same method: word/letter ordering or order of use or order of definition. If you need word
ordering for one glossary and letter ordering for another you’ll have to explicitly call make-
index for each glossary type.

[glossaries—extra

The glossaries—extra package allows a hybrid mix of Options 1 and 2 to provide word/
letter ordering with Option 2 and order of use/definition with Option 1. See the glossaries
—extra documentation for further details. See also the glossaries—extra alternative to
sampleSort.texin §18.5.

Summary:

1. If you want to use makeindex’s —g option you must change the quote character using
\GlsSetQuote. For example:

=

\GlsSetQuote{+}

This must be used before \makeglossaries. Note that if you are using babel, the
shorthands aren’t enabled until the start of the document, so you won’t be able to use the
shorthands in definitions that occur in the preamble.

2. Add

\makeglossaries

16

1. Introduction

to your preamble (before you start defining your entries, as described in §4).

3. Put

=

[\printglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

Ei

[\printglossaries

4. Run I4TEX on your document. This creates files with the extensions g1lo and 1 st (for
example, if your IS[EX document is called myDoc . tex, then you’'ll have two extra files
called myDoc.glo and myDoc.1ist). If you look at your document at this point,
you won't see the glossary as it hasn’t been created yet. (If you use glossaries—extra you'll
see the section heading and some boilerplate text.)

If you have used package options such as symbo 1 s there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

5. Runmakeindex with the glo file as the input file and the 1 st file as the style so that
it creates an output file with the extension gl s:

makeindex -s myDoc.ist -o myDoc.gls myDoc.glo \

(Replace myDoc with the base name of your I[|EX document file. Avoid spaces in the
file name if possible.)

[i
=
The file extensions vary according to the glossary type. See §1.6.4 for further

details. makeindex must be called for each set of files.

If you don’t know how to use the command prompt, then you can probably access make-
index via your text editor, but each editor has a different method of doing this. See
Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document build*
for some examples.

Alternatively, run makeindex indirectly via the makeglossaries script:

“dickimaw-books.com/latex/buildglossaries/

17

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

makeglossaries myDoc \

Note that the file extension isn’t supplied in this case. (Replace makeglossaries
with makeglossaries—1ite if you don’t have Perl installed.) This will pick up
all the file extensions from the aux file and run makeindex the appropriate number
of times with all the necessary switches.

The simplest approach is to use arara and add the following comment lines to the start
of your document:

=

o\

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o\°

o°

(Replace makeglossaries with makeglossarieslite in the second line
above if you don’t have Perl installed. Note that there’s no hyphen in this case.)

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering
you need to add the —1 switch:

makeindex -1 -s myDoc.ist -o myDoc.gls myDoc.glo \

(See §1.6.4 for further details on using makeindex explicitly.) If you use make-
glossariesormakeglossaries—1litethenusethe order=1etter pack-
age option and the — 1 option will be added automatically.

6. Once you have successfully completed the previous step, you can now run I£TEX on your
document again.

You'll need to repeat the last step if you have used the £ o c option (unless you're using glossaries
—extra) to ensure the section heading is added to the table of contents. You'll also need to repeat
steps 5 and 6 if you have any cross-references which can’t be indexed until the indexing file has
been created.

1.3.3. Option 3 (xindy)
)

=
Since xindy was designed for indexes, it doesn’t fully integrate with the glossaries pack-

age, which has more complex use cases than a simple index. A better solution is to use
bib2gls which is developed alongside glossaries—extra and so provides better inte-
gration. See the x1ndy home page http://www.xindy.org/ for the xindy
documentation, and links to the mailing list and issue tracker.

18

http://www.xindy.org/

1. Introduction

Example 5 demonstrates a simple document that requires xindy:

,

\documentclass{article}

\usepackage [xindy, style=indexgroup] {glossaries}

\makeglossaries $ open indexing files

\newglossaryentry{parrot }{name={parrot},
description={a brightly coloured tropical bird}}

\newglossaryentry{duck}{name={duck},
description={a waterbird}}

\newglossaryentry{puffin}{name={puffin},
description=

{a seabird with a brightly coloured bill}}

\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}

5

a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}}

% an acronym:

\setacronymstyle{short-long}
\newacronym{arpanet } { ARPANET }

{Advanced Research Projects Agency Network}
\begin{document}

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.

\printglossary

\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries (after \makeglossaries). The result is the same as for Example 3 and
Example 4.

19

1. Introduction

N

N Example 5: Simple document that uses xindy to sort entries NEFXE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called x1ndy to sort the entries. This application is more
flexible than makeindex and is able to sort extended Latin alphabets or non-Latin alpha-
bets, however it does still have some limitations. (See Example 9 for an example with UTF-8
characters.)

The xindy application comes with both TgX Live and MikTgX, but since xindy is a
Perl script, you will also need to install Perl, if you don’t already have it. In a similar way to
Option 2, this option involves making I&TEX write the glossary information to a temporary file
which xindy reads. Then x i ndy writes a new file containing the code to typeset the glossary.
Then \printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to sort according to
a language other than English or if you want non-standard location lists, but it can require some
setting up (see §14). There are some problems with certain sort values:

* entries with the same sort value are merged by xindy into a single glossary line so you
must make sure that each entry has a unique sort value;

* xindy forbids empty sort values;

* xindy automatically strips control sequences, the math-shift character $ and braces { }
from the sort value, which is usually desired but this can cause the sort value to collapse
to an empty string which xindy forbids.

In these problematic cases, you must set the s o rt field explicitly, as in the above example which
has:

20

% This file is embedded in glossaries-user.pdf
% Example 5 Simple document that uses xindy to sort entries
% Label: "ex:xdy"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[xindy,style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses xindy to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.pdf

1. Introduction

\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}

}

glossaries—extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-
stead of the name).

All glossaries must be sorted according to the same method (word/letter ordering, order of
use, or order of definition).

[glossaries—extra

The glossaries—extra package allows a hybrid mix of Options 1 and 3 to provide word/
letter ordering with Option 3 and order of use/definition with Option 2. See the glossaries
—extra documentation for further details.

Summary:

1. Add the xindy option to the glossaries package option list:

=

\usepackage[xindy] {glossaries}

If you are using a non-Latin script you'll also need to either switch off the creation of the
number group:

=

\usepackage [xindy={glsnumbers=false}]
{glossaries}

oruse either \GlsSetXdyFirstLetterAfterDigits{(letter)} (to indicate
the first letter group to follow the digits) or \G1sSetXdyNumberGroupOrder
{(spec) } to indicate where the number group should be placed (see §14).

2. Add \makeglossaries to your preamble (before you start defining your entries, as
described in §4).

3. Run KTEX on your document. This creates files with the extensions g1l o and xdy (for
example, if your I&EX document is called myDoc . t ex, then you’'ll have two extra files
called myDoc.gloandmyDoc . xdy). If you look at your document at this point, you
won’t see the glossary as it hasn’t been created yet. (If you're using the glossaries—extra
extension package, you’ll see the section header and some boilerplate text.)

21

1. Introduction

If you have used package options such as symbo 1 s there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

4. Run xindy with the glo file as the input file and the xdy file as a module so that it
creates an output file with the extension g1 s. You also need to set the language name and
input encoding, as follows (all on one line):

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg —-o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your ISTEX document file. Avoid spaces in the file
name. If necessary, also replace english with the name of your language and ut £8
with your input encoding, for example, -1, german -C din5007-ut£f8.)

[i
=
The file extensions vary according to the glossary t ype. See §1.6.3 for further

details. x1ndy must be called for each set of files.

It’s much simpler to use makeglossaries instead:

makeglossaries myDoc \

Note that the file extension isn’t supplied in this case. This will pick up all the file ex-
tensions from the aux file and run xindy the appropriate number of times with all the
necessary switches.

There’s no benefit in using makeglossaries—1ite with xindy. (Remember
that xindy is a Perl script so if you can use xindy then you can also use make-
glossaries, and if you don’t want to use makeglossaries because you don’t
want to install Perl, then you can’t use xindy either.)

If you don’t know how to use the command prompt, then you can probably access x1ndy
or makeglossaries via your text editor, but each editor has a different method of
doing this. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the
document build® for some examples.

Again, a convenient method is to use arara and add the follow comment lines to the
start of your document:

Ei

o\

arara: pdflatex
% arara: makeglossaries

dickimaw-books.com/latex/buildglossaries/

22

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

l % arara: pdflatex

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering
you need to add the order=1etter package option:

=

[\usepackage [xindy, order=letter] {glossaries}

(and return to the previous step). This option is picked up by makeglossaries. If
you are explicitly using xindy then you’ll need to add -M ord/letorder to the
options list. See §1.6.3 for further details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now run I£IEX on your
document again. As with makeindex (Option 2), you may need to repeat the previous
step and this step to ensure the table of contents and cross-references are resolved.

1.3.4. Option 4 (bib2gls)

This option is only available with the glossaries—extra extension package. This method uses
bib2gls to both fetch entry definitions from b ib files and to hierarchically sort and collate.
The bib2gls application is designed specifically for, and developed alongside, the glossaries
—extra package.

Example 6 demonstrates a simple document that requires bib2gls:

\documentclass{article}

\usepackage [record, style=indexgroup] {glossaries—
extra}

\setabbreviationstyle{short-long}

% data in sample-entries.bib:
\GlsXtrLoadResources[src={sample-entries}]
\begin{document}

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.
\printunsrtglossary

\end{document}

Note that the abbreviation style must be set before \G1 sXt rLoadResources. The file

sample—entries.bib contains:

23

glossaries
—extra

B

1. Introduction

@entry{parrot,
name={parrot},
description={a brightly coloured tropical bird}
¥
@entry{duck,
name={duck},
description={a waterbird}
}
@entry{puffin,
name={puffin},
description={a seabird with a brightly
coloured bill}
}
@entry{penguin,
name={penguin},
description={a flightless black and white seabird}
}
@symbol{alpha,
name={\ensuremath{\alpha}},
description={a variable}
¥
@abbreviation{arpanet,
short={ARPANET},
long={Advanced Research Projects Agency Network}

}

The result is slightly different from the previous examples. Letter groups aren’t created by de-

fault with bib2gls so, even though the glossary style supports letter groups, there’s no
information. This can be added by invoking bib2gls with the ——group switch.

24

group

1. Introduction

N Example 6: Simple document that uses bib2gls to sort entries \EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary

a a variable 1

ARPANET Advanced Research Projects Agency Network 1
duck a waterbird 1

parrot a brightly coloured tropical bird 1

puffin a seabird with a brightly coloured bill 1

All entries must be provided in one or more b 1D files. (See the bib2gls user manual for
the required format.) In this example, the terms “parrot”, “duck”, “puffin” and “penguin” are de-
fined using @atent ry, the symbol alpha («) is defined using @ symbo1 and the abbreviation
“ARPANET” is defined using dabbreviat ion. See Example 10 for an example with UTF-8
content.

[i
=
Note that the sort key should not be used. Each entry type (dentry, @symbol,

@abbreviation) has a particular field that’s used for the sort value by default
(name, the label, short). You will break this mechanism if you explicitly use the
sort key. See bib2gls gallery: sorting” for examples.

dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

The glossaries—extra package needs to be loaded with the re cord package option:

\usepackage [record] {glossaries—extra}

or (equivalently)

[\usepackage[record=only] {glossaries—extra}

or (with glossaries—extra v1.37+ and bib2gls v1.8+):

[\usepackage [record=nameref] {glossaries—-extra}

25

% This file is embedded in glossaries-user.pdf
% Example 6 Simple document that uses bib2gls to sort entries
% Label: "ex:b2g"
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-entries.bib}
@entry{parrot,
 name={parrot},
 description={a brightly coloured tropical bird}
}
@entry{duck,
 name={duck},
 description={a waterbird}
}
@entry{puffin,
 name={puffin},
 description={a seabird with a brightly coloured bill}
}
@entry{penguin,
 name={penguin},
 description={a flightless black and white seabird}
}
@symbol{alpha,
 name={\ensuremath{\alpha}},
 description={a variable}
}
@abbreviation{arpanet,
 short={ARPANET},
 long={Advanced Research Projects Agency Network}
}
\end{filecontents*}
\usepackage[record,style=indexgroup]{glossaries-extra}
\setabbreviationstyle{short-long}
\GlsXtrLoadResources[src={sample-entries}]% data in sample-entries.bib

\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

Nicola Talbot
Simple document that uses bib2gls to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are no letter groups (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.pdf
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

1. Introduction

The record=nameref option is the best method if you are using hyperref.
Each resource set is loaded with \G1 sXt rLLoadResources. For example:

\GlsXtrLoadResources

[$ definitions in entriesl.bib and entries2.bib:
src={entriesl,entries?2},

sort={de-CH-1996}% sort according to this locale
]

The b 1D files are identified as a comma-separated list in the value of the src key. The sort
option identifies the sorting method. This may be a locale identifier for alphabetic sorting, but
there are other sort methods available, such as character code or numeric. One resource set
may cover multiple glossaries or one glossary may be split across multiple resource sets, forming
logical sub-blocks.

If you want to ensure that all entries are selected, even if they haven’t been referenced in
the document, then add the option selection=all. (There are also ways of filtering the
selection or you can even have a random selection by shuffling and truncating the list. See the
bib2gls user manual for further details.)

The glossary is displayed using:

[\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

[\printunsrtglossaries

The document is built using:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If letter groups are required, you need the ——group switch:

bib2gls —-—-group myDoc

B LB LE LB

or with arara:

26

1. Introduction

(¢}

% arara: bib2gls: { group: on }

(You will also need an appropriate glossary style.)

Unlike Options 2 and 3, this method doesn’t create a file containing the typeset glossary but
simply determines which entries are needed for the document, their associated locations and
(if required) their associated letter group. This option allows a mixture of sort methods. For
example, sorting by word order for one glossary and order of use for another or even sorting one
block of the glossary differently to another block in the same glossary. See bib2gls gallery:
sorting.®

This method supports Unicode and uses the CLDR, which provides more extensive language
support than xindy. (Except for Klingon, which is supported by x i ndy, but not by the CLDR.)
The locations in the number list may be in any format. If bib2gls can deduce a numerical
value it will attempt to form ranges otherwise it will simply list the locations.

Summary:

1. Use glossaries—extra with the record package option:

[\usepackage[record] {glossaries—extra}

2. Use \GlsXtrLoadResources toidentify the bib file(s)and bib2gl s options.
The bib extension may be omitted:

\GlsXtrLoadResources|[src=
{terms.bib, abbreviations.bib}, sort=en]

_ B

3. Put

\printunsrtglossary

where you want your list of entries to appear. Alternatively to display all glossaries use the
iterative command:

\printunsrtglossaries

B

®dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

27

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

1. Introduction

4. Run I£TEX on your document.
5. Runbib2gls with just the document base name.
6. Run I£TEX on your document.

See glossaries-extraand bib2gls: An Introductory Guide’ or the bib2gl s user manual
for further details of this method, and also Incorporating makeglossaries or makeglossaries-lite
or bib2gls into the document build.®

1.3.5. Option 5 (“unsrt”)

This option is only available with the extension package glossaries—extra. No indexing applica- glossaries
tion is required. —extra

Example 7 demonstrates this method: &

\documentclass{article}
\usepackage[style=indexgroup] {glossaries—-extra}
\newglossaryentry{parrot }{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
description={a variable}}
% an abbreviation:
\setabbreviationstyle{short-long}
\newabbreviation{arpanet } {ARPANET}
{Advanced Research Projects Agency Network}
\begin{document }
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

'mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

8dickimaw-books.com/latex/buildglossaries/

28

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries. There’s no “activation” command (such as \makeglossaries for Op-
tions 2 and 3).

The result is different from the previous examples. Now all entries are listed in the glossary,
including “penguin” which hasn’t been referenced in the document, and the list is in the order
that the entries were defined. There are no number lists.

N Example 7: Simple document with an unsorted list of all defined entries \EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and a. Next use: ARPANET.

Glossary

P

parrot a brightly coloured tropical bird
D

duck a waterbird

P

puffin a seabird with a brightly coloured bill
penguin a flightless black and white seabird

A

a a variable
ARPANET Advanced Research Projects Agency Network

Note that the letter groups are fragmented because the list isn’t in alphabetical order, so there are
two “P” letter groups.

The \printunsrtglossary command simply iterates over the set of all defined en-
tries associated with the given glossary and lists them in the order of definition. This means that
child entries must be defined immediately after their parent entry if they must be kept together
in the glossary. Some glossary styles indent entries that have a parent but it’s the indexing appli-
cation that ensures the child entries are listed immediately after the parent. If you’re opting to
use this manual approach then it’s your responsibility to define the entries in the correct order.

The glossaries—extra package requires entries to be defined in the preamble by default. It’s
possible to remove this restriction, but bear in mind that any entries defined after \print-
unsrtglossary won't be listed.

The glossary is displayed using:

29

% This file is embedded in glossaries-user.pdf
% Example 7 Simple document with an unsorted list of all defined entries
% Label: "ex:unsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an abbreviation:
 \setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
% entries are listed in order of definition
 \printunsrtglossary
\end{document}

Nicola Talbot
Simple document with an unsorted list of all defined entries (source code)
Example document that defines some entries, references a subset of them in the document and displays an unsorted list of the defined entries: parrot, duck, puffin, penguin, alpha and ARPANET. There are four letter groups with a repeated letter: P, D, P, A (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.pdf

1. Introduction

[\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

=

\printunsrtglossaries

This method will display all defined entries, regardless of whether or not they have been used
in the document. Note that this uses the same command for displaying the glossary as Option 4.
This is because bib2gls takes advantage of this method by defining the wanted entries in
the required order and setting the locations (and letter group information, if required). See the
glossaries—extra manual for further details.

Therefore, the above example document has a glossary containing the entries: parrot, duck,
puffin, penguin, o and ARPANET (in that order). Note that the “penguin” entry has been in-
cluded even though it wasn’t referenced in the document.

This just requires a single IZTEX call:

pdflatex myDoc \

unless the glossary needs to appear in the table of contents, in which case a second run is required:

pdflatex myDoc
pdflatex myDoc

(Naturally if the document also contains citations, and so on, then additional steps are required.
Similarly for all the other options above.)
See the glossaries—extra documentation for further details of this method.

1.3.6. Option 6 (“standalone”)

This option is only available with the glossaries—extra extension package. (You can just use
the base glossaries package for the first case, but it’s less convenient. You’d have to manually
insert the entry target before the sectioning command and use \glsentryname { (label)}
or \Glsentryname{ (label)} to display the entry name.) Instead of creating a list, this has
standalone definitions throughout the document. The entry name may or may not be in a section
heading.

You can either define entries in the preamble (or in an external file loaded with \ loadgls-
entries), as with Option 5, or use bib2gls if you want to manage a large database of
terms.

Example 8 demonstrates standalone definitions without b1b2gls:

30

glossaries
—extra

B

1. Introduction

\documentclass{article}

\usepackage[colorlinks] {hyperref}
\usepackage [sort=none,
nostyles% <- no glossary styles are required
]{glossaries—-extra}

\newglossaryentry{set}{name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

\newglossaryentry{function}{name={function},
description=
{a rule that assigns every element in the
domain \gls{set} to an element in the range \gls
{set}},
symbol={\ensuremath{f (x) }}
}
\newcommand*{\termdef} [1]{%
\section{\Glsxtrglossentry{#1} \glsentrysymbol{#1}

o\°

}
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}

\begin{document}

\tableofcontents

\section{Introduction}

Sample document about \glspl{function} and \glspl
{set}.

\termdef {set}

More detailed information about \glspl{set}
with examples.

\termdef{function}

More detailed information about \glspl{function}
with examples.

31

1. Introduction

l \end{document}

This allows the references to hyperlink to the standalone definitions rather than to a glossary.

4 Example 8: Simple document with standalone entries P X2 A
Contents

1 Introduction 1

2 SetS 1

3 Function f(x) 1

1 Introduction

Sample document about functions and sets.

2 Set S

A collection of any kind of objects.

More detailed information about sets with examples.

3 Function f(x)

A rule that assigns every element in the domain set to an element
in the range set.

More detailed information about functions with examples.

The above example can be modified to use bib2gl s if the terms are defined in one or more

bib files:

\documentclass{article}

\usepackage[colorlinks] {hyperref}
\usepackage [record,
nostyles% <— no glossary styles are required

32

% This file is embedded in glossaries-user.pdf
% Example 8 Simple document with standalone entries
% Label: "ex:standalone"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[sort=none,
 nostyles% <- no glossary styles are required
]{glossaries-extra}

\newglossaryentry{set}{name={set},
 description={a collection of any kind of objects},
 symbol={\ensuremath{\mathcal{S}}}
}

\newglossaryentry{function}{name={function},
 description={a rule that assigns every element in the
 domain \gls{set} to an element in the range \gls{set}},
 symbol={\ensuremath{f(x)}} }
\newcommand*{\termdef}[1]{%
 \section{\Glsxtrglossentry{#1} \glsentrysymbol{#1}}%
 \begin{quote}\em\Glsentrydesc{#1}.\end{quote}%
}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}

More detailed information about \glspl{set} with examples.

\termdef{function}

More detailed information about \glspl{function} with examples.
\end{document}

Nicola Talbot
Simple document with standalone entries (source code)
Example document that defines entries and displays them in the document. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.pdf

1. Introduction

]{glossaries—extra}

\GlsXtrLoadResources[src={terms}, sort=none, save
—locations=false]

\newcommand*{\termdef}[1]{%
\section{\Glsxtrglossentry{#1} \glossentrysymbol

{#1}}%
\glsadd{#1}% <- index this entry
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}

\begin{document}

\tableofcontents

\section{Introduction}

Sample document about \glspl{function} and \glspl
{set}.

\termdef {set}

More detailed information about \glspl{set}
with examples.

\termdef{function}
More detailed information about \glspl{function}

with examples.
\end{document}

Where the file terms . bib contains:

@entry{set,
name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

dentry{function,
name={function},
description=

{a rule that assigns every element in the domain
\gls{set} to an element in the range \gls{set}},

33

1. Introduction

symbol={\ensuremath{f (x) }}
}

The advantage in this approach (with \1loadglsentries or bib2gls) is that you can
use an existing database of entries shared across multiple documents, ensuring consistent notation
for all of them.

In both cases, there’s no need to load all the glossary styles packages, as they’re not required,
so I've used the nost y1es package option to prevent them from being loaded.

In the first case, you just need to define the terms (preferably in the preamble or in a file that’s
input in the preamble). No external tool is required. Just run IXTEX as normal. (Twice to ensure
that the table of contents is up to date.)

pdflatex myDoc
pdflatex myDoc

In the second case, you need the record package option (as in Option 4) since bib2gls
is needed to select the required entries, but you don’t need a sorted list:

=

[\GlsXtrLoadResources[src={terms}, sort=none]

This will ensure that any entries indexed in the document (through commands like \gls or
\glsadd) will be selected by bib2gls, but it will skip the sorting step. (The chances
are you probably also won’t need location lists either. If so, you can add the option save
—locations=false.)

Remember that for this second case you need to run bib2gls as per Option 4:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
pdflatex myDoc

For both cases (with or without bib2gls), instead of listing all the entries using \print-
unsrtglossary,youuse \glsxtrglossentry{ (label)} where you want the name
(and anchor with hyperref) to appear in the document. This will allow the link text created by
commands like \gls to link to that point in the document. The description can simply be
displayed with \glsentrydesc{(label)} or \Glsentrydesc{label}, as in the
above examples. In both examples, I've defined a custom command \termde f to simplify
the code and ensure consistency. Extra styling, such as placing the description in a coloured
frame, can be added to this custom definition as required.

(Instead of using \glsentrydesc or \Glsentrydesc, you can use \gloss-
entrydesc{(label)}, which will obey category attributes suchas glossdescand gloss-

34

1. Introduction

descfont. See the glossaries—extra manual for further details.)

The symbol (if required) can be displayed with either \glsentrysymbol {(label)} or
\glossentrysymbol{(label)}. In the first example, 've used \glsentrysymbol.
In the second I've used \glossentrysymbol. The latter is necessary with bib2gls if
the symbol needs to go in a section title as the entries aren’t defined on the first IXIEX run.

In normal document text, \glsentrysymbol will silently do nothing if the entry hasn’t
been defined, but when used in a section heading it will expand to an undefined internal command
when written to the aux file, which triggers an error.

The \glossentrysymbol command performs an existence check, which triggers a
warning if the entry is undefined. (All entries will be undefined before the first b1b2gls call.)
You need at least glossaries—extra v1.42 to use this command in a section title. (\gloss-
entrysymbol is defined by the base glossaries package but is redefined by glossaries—extra.)
If hyperref has been loaded, this will use \texorpdfstring to allow a simple expansion
for the PDF bookmarks (see the glossaries—extra user manual for further details).

If you want to test if the s ymbo 1 field has been set, youneed touse \ 1 fglshassymbol
outside of the section title. For example:

=

\ifglshassymbol{#1}%
{\section{\glsxtrglossentry{#1} \glossentrysymbol

{#1}1}}
{\section{\glsxtrglossentry{#1}}}

In both of the above examples, the section titles start with a lowercase character (because the
name value is all lowercase in entry definitions). You can apply automatic case change with the
glossname category attribute. For example:

Ei

\glssetcategoryattribute{general}{glossname}
{firstuc}

or (for title-case)

Ei

\glssetcategoryattribute{general}{glossname}{title}

However, this won’t apply the case change in the table of contents or bookmarks. Instead you can
use helper commands provided by glossaries—extra v1.49+ but make sure you have up-to-date
versions of glossaries and mfirstuc.

In the second example, you can instead use bib2gls to apply a case change. For example,
to apply sentence case to the name field:

35

1. Introduction

\GlsXtrLoadResources[src={terms},
sort=none, save—-locations=false,
replicate-fields={name=text},
name—-case—change=firstuc

]

(Or name—-case—change=title for title case.) This copies the name value to the
text field and then applies a case change to the name field (leaving the text field un-
changed). The name in the section titles now starts with a capital but the link text produced
by commands like \ g1 s is still lowercase.

In the first example (without bib2g1ls) you can do this manually. For example:

=

\newglossaryentry{set}{name={Set}, text={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

A more automated solution can be obtained with the standalone helper commands for the PDF
bookmark and heading text (glossaries—extra v1.49+).

Note that if you use the default save—locations=true withbib2gls,it’s possible
to combine Options 4 and 6 to have both standalone definitions and an index. In this case, a
glossary style is required. In the example below, I've use bookindex, which is provided in the
glossary—bookindex package (bundled with glossaries—extra). I don’t need any of the other style
packages, so I can still keep the nostyles option and just load glossary—bookindex:

\usepackage [record=nameref, % <- using bib2gls
nostyles, % <- don't load default style packages
stylemods=

bookindex, % <- load glossary-bookindex.sty
style=book-

index% <- set the default style to 'bookindex'

]{glossaries—extra}

I also need to sort the entries, so the resource command is now:

\GlsXtrLoadResources[src={terms}

,% definitions in terms.bib
sort=en-GB, % sort by this locale

36

1. Introduction

replicate-fields={name=text},
name—-case—-change=firstuc

]

At the end of the document, I can add the glossary:

H
[\printunsrtglossary[title=Index, target=false]

Note that I've had to switch off the hypertargets with t arget=fal se (otherwise there would
be duplicate targets). If you want letter group headings you need to use the ——group switch:

bib2gls —-—-group myDoc

or if you are using arara:

o)

% arara: bib2gls: { group: on }

H

The bookindex style doesn’t show the description, so only the name and location is displayed.
Remember that the name has had a case change so it now starts with an initial capital. If you feel
this is inappropriate for the index, you can adjust the bookindex style so that it uses the text
field instead. For example:

Ei
\renewcommand*{\glsxtrbookindexname} [1]{%
\glossentrynameother{#1}{text}}
See the glossaries—extra user manual for further details about this style.
Note that on the first IZTEX run none of the entries will be defined. Once they are defined, the
page numbers may shift due to the increased amount of document text. You may therefore need
to repeat the document build to ensure the page numbers are correct.

If there are extra terms that need to be included in the index that don’t have a description, you
can define them with @index in the bib file. For example:

B
@index{element}
@index{member,alias={element}}

They can be used in the document as usual:

37

1. Introduction

The objects that make up a set are the \glspl
{element}
or \glspl{member}.

See glossaries-extra and bib2gls: An Introductory Guide® or the bib2gls user manual
for further details.

1.4. Dummy Entries for Testing

In addition to the sample files described in §18, glossaries also provides some files containing
lorum ipsum dummy entries. These are provided for testing purposes and are on TgX’s path (in
tex/latex/glossaries/test—-entries) so they can be included via \ input
or \loadglsentries. The glossaries—extra package provides bib versions of all these
files for use with bilb2gls. The files are as follows:

Nexample-glossaries-brief.tex

These entries all have brief descriptions. For example:

=

\newglossaryentry{lorem}{name={lorem},description=
{ipsum} }

N example—-glossaries—-utf8.tex

This file is based on example—glossaries—brief.tex but random characters
have been converted to accented characters to test UTF-8 support.

(N example-glossaries—long.tex

These entries all have long descriptions. For example:

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris. }}

(N example-glossaries—-multipar.tex

These entries all have multi-paragraph descriptions. For example:

mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

38

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

1. Introduction

\longnewglossaryentry{loremi-ii}{name={lorem 1--2}}

o

(o]
Q
{%

Lorem ipsum

Nam dui ligula...

}

(Nexample-glossaries—-symbols.tex

These entries all use the symbo 1 key. For example:

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alphatl},
description={Quisque ullamcorper placerat ipsum.}}

(N example-glossaries—symbolnames.tex

Similar to the previous file but the symbo 1 key isn’t used. Instead the symbol is stored in
the name key. For example:

=

\newglossaryentry{sym.alpha}{sort={alpha},
name={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

(Nexample-glossaries—constants.tex

Sample set of entries that represent mathematical constants. Some commands are provided
that are used in the name field. For example:

=

\providecommand{\constanti}{\ensuremath{i}}
\providecommand{\constantpi}{\ensuremath{\pi}}

The symbo 1 may also be set (but not for all entries). The user 1 key is set to the approximate
numeric value for most but not all entries. The symbols are of varying widths and heights, which
may be useful for style alignment tests. One entry has a cross-reference with the see key. For
example:

39

1. Introduction

\newglossaryentry{i-constant}{name={\constanti},
symbol={\ensuremath{\sqgrt{-1}}1},

sort={i},

description={imaginary unit}

}

\newglossaryentry{pi-constant }{name={\constantpi},
sort={pi},

description=

{ratio of a circle's circumference to its diameter},
userl1={3.14159265358979323846}

}

\newglossaryentry{tau-constant }{name={\constanttau},
sort={tau},

symbol={\ensuremath{2\constantpi}},

description=

{ratio of a circle's circumference to its radius},
userl={6.28318530717958647692},

see={pi-constant}

}

.

Nexample—-glossaries—user.tex

The top level (level 0) entries have the symbol key and all userl, ..., usero6 keys set.

For example:

\newglossaryentry{sample-a}
{name={a name},
description={a description},
symbol={\ensuremath{\alpha}l},
userl={A},

user2={1},

user3={1i},

userd={A-1i},
userb5={25.2020788573521},
user6={1585-11-06}}

There are also some level 1 entries, which may or may not have the symbo 1 and user keys set.
For example:

40

1. Introduction

\newglossaryentry{sample-b-0}
{parent={sample-b},

name={b/0 name},
description={child 0 of b},
symbol={\ensuremath{\sigma}},
user2={0},

userd={a-i}}

There are no deeper hierarchical entries. Where set, the user 1 key is an uppercase letter (A—
Z), the user?2 key is an integer, the user 3 key is a lowercase Roman numeral, the user4
key is in the form (alpha)-(roman) where (alpha) is either an upper or lowercase letter (a—z or
A-Z) and (roman) is either an upper or lowercase Roman numeral. The use r 5 key is a random
number (in the range (—50, +50) for top level (level 0) entries and (—1, +1) for child entries).
The user 6 key is a random date between 1000-01-01 and 2099-12-31.

Nexample-glossaries—images.tex

These entries use the use r 1 key to store the name of an image file. (The images are provided
by the mwe package and should be on TgX’s path.) One entry doesn’t have an associated image
to help test for a missing key. The descriptions are long to allow for tests with the text wrapping

around the image. For example:

\longnewglossaryentry{sedfeugiat}{name={sed feugiat}

userl={example-image}}%
{%

Cum sociis natoque...

Etiam...

}

(N example-glossaries—acronym.tex

These entries are all acronyms. For example:

\newacronym[type={\glsdefaulttype}]{1id}{LID}
{lorem ipsum
dolor}

41

1. Introduction

[glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation style for the
acronym category. For example:

=

\setabbreviationstyle[acronym] {long—-short}

(N example-glossaries—acronym—-desc.tex

This file contains entries that are all acronyms that use the description key. For exam-
ple:
\newacronym[type={\glsdefaulttype},
description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{ndl}{NDL}{nam dui ligula}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation style for the
acronym category. For example:

=

\setabbreviationstyle[acronym] {long-short-desc}

(Nexample—-glossaries—acronyms-lang.tex

These entries are all acronyms, where some of them have a translation supplied in the userl

key. For example:

\newacronym[type={\glsdefaulttype},userl=
{love itself}]
{1i}{LI}{lorem ipsum}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than

42

1. Introduction

the default abbreviation). This means that you need to set the abbreviation style for the
acronym category. For example:

=

\setabbreviationstyle[acronym] {long-short-user}

Nexample-glossaries—parent.tex

These are hierarchical entries where the child entries use the name key. For example:

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}}

\newglossaryentry{gravida}{parent={sedmattis},
name={gravida},description={malesuada}}

[Mexample-glossaries—childnoname.tex

These are hierarchical entries where the child entries don’t use the name key. For example:

\newglossaryentry{scelerisque}{name={scelerisque},
description={at}}

\newglossaryentry{vestibulum}{parent={scelerisque},
description={eu, nulla}}

(N example-glossaries—-longchild.tex

These entries all have long descriptions and there are some child entries. For example:

\newglossaryentry{longsedmattis}{name={sed mattis},
description=

{erat sit amet dolor sit amet, consectetuer adipiscing
Ut purus elit, vestibulum ut, placerat ac, adipiscing
Curabitur dictum gravida mauris.}}

\newglossaryentry{longgravida}{parent=
{longsedmattis}, name={gravida},
description=

43

elit.
vitae, fe

{malesuada libero, nonummy eget, consectetuer id, vulthate a,

1. Introduction

magna. Donec vehicula augue eu neque. Pellentesque habhpitant mor
senectus et netus et malesuada fames ac turpis egestas| Mauris u
leo.}}

(Nexample-glossaries—childmultipar.tex

This consists of parent entries with single paragraph descriptions and child entries with multi-
paragraph descriptions. Some entries have the user1 key set to the name of an image file

provided by the mwe package. For example:

\newglossaryentry{hiersedmattis}{name={sed mattis}
,userl={example-image},

description=
{Erat sit amet dolor sit amet, consectetuer adipiscing|elit.

Ut purus elit, vestibulum ut, placerat ac, adipiscing|vitae, fe
dictum gravida mauris. Ut pellentesque augue sed urna. |Vestibulu
diam eros, fringilla et, consectetuer eu, nonummy id, $apien. Nu
at lectus. In sagittis ultrices mauris. Curabitur malesuada erat
amet massa. Fusce blandit. Aliquam erat volutpat.}}

\longnewglossaryentry{hierloremi-ii}
{name={lorem 1--2},parent={hiersedmattis}}%
{%

Lorem ipsum

Nam dui ligula...

}

N example—-glossaries—cite.tex

These entries use the user 1 key to store a citation key (or comma-separated list of citation
keys). The citations are defined in xamp1 . bib, which should be available on all modern TX
distributions. One entry doesn’t have an associated citation to help test for a missing key. For
example:

=

\newglossaryentry{fusce}{name={fusce},
description={suscipit cursus sem},userl={article-
minimal}}

(Nexample-glossaries-url.tex

These entries use the user 1 key to store an URL associated with the entry. For example:

44

1. Introduction

\newglossaryentry{aenean-url}{name={aenean},
description={adipiscing auctor est},
userl={http://uk.tug.org/}}

The samplefileglossary—-lipsum—examples.texinthedoc/latex/glossaries/san
directory uses all these files. See also glossaries gallery.!°
The glossaries—extra package provides the additional test file: glossaries
—ext
(Nexample-glossaries—xr.tex eaa
These entries use the see key provided by the base glossaries package and alsothe a1ias
and seeal so keys that require glossaries—extra. For example:

\newglossaryentry{alias—-lorem}{name={alias—-lorem},
description={ipsum},alias={lorem}}

\newglossaryentry{amet }{name={amet}, description=
{consectetuer},
see={dolor}}

\newglossaryentry{arcu}name={arcu},description=
{libero},
seealso={placerat,vitae, curabitur}

1.5. Multi-Lingual Support
(i]

=
The glossaries package uses the tracklang package to determine the document languages.

Unfortunately, because there isn’t a standard language identification framework provided
with IXTEX, tracklang isn’t always able to detect the selected languages either as a result of
using an unknown interface or where the interface doesn’t provide a way of detecting the
language.

You will needed at least version 1.6.4 of tracklang to support babel’s \babelpro-
vide. Allinstances of \babelprovide need to occur before tracklang is loaded. In
the event that tracklang can’t detect the language, use the languages or Llocales
package option. See §1.2 and also Localisation with t racklang. tex for further
details.

dickimaw-books.com/latex/tracklang/

99ickimaw-books.com/gallery/#glossaries

45

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//glossary-lipsum-examples.tex
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/gallery/#glossaries

1. Introduction

For example (using babel):

\documentclass{article}
\usepackage [german] {babel}
\usepackage{glossaries}

[

This can pick up the language setting but will also automatically load translator. Compare this
with:

\documentclass{article}
\usepackage [german] {babel}
\usepackage{glossaries—extra}

__ B

This will pick up the language setting but won’t automatically load translator.

In both the above cases, tracklang will automatically be loaded and the language-sensitive
commands provided by glossaries will use the definitions in glossaries—german.1ldf
(which needs to be installed separately).

Another example (no language package):

\documentclass[german] {article}
\usepackage[translate=true] {glossaries}

_ B

The above document doesn’t load babel or polyglossia or translator, but the t ranslate=
t rue setting will ensure that tracklang is loaded, which will pick up the document class option.
Alternatively, using the 1 oca les package option:

\usepackage[locales={de-DE,en-GB}]{glossaries}

B

This willrequiredbothglossaries—german.ldfandglossaries—-english.1df
to be installed. Note that the 1ocales option is a synonym of the languages option, but
semantically 1 ocales makes more sense when using language identifiers that include regions.

Note that if another package has already been loaded that uses tracklang, then the list of
supported locales will be picked up from that package. For example:

\usepackage [de-DE, en-GB] {datetime?2}
\usepackage{glossaries}

_ B

You may find that you get a warning from datatool, such as “No ‘datatool’ support for di-
alect ‘ngerman’. This is because the datatool—base package, which is automatically loaded

46

1. Introduction

by glossaries, also provides localisation support. In the case of datatool, the localisation sup-
port is split into region (for currency and number parsing) and language. Only the language
part is applicable to the glossaries package, and that’s specific to the word or letter sorting with
\printnoidxglossary (sort=wordor sort=letter).

If there is no datatool localisation support, either because none has been provided or your
version of datatool is too old, then \printnoidxglossary will only be able to sort ac-
cording to the Basic Latin alphabet. Any extended Latin alphabet or non-Latin alphabet will be
ordered by character code.

The absence of datatool localisation support doesn’t affect the glossaries package’s own locali-

sation support and is notrelevant with \printglossaryor \printunsrtglossary.

You can suppress the warning either by loading datatool—base earlier with the option 1ang-—
warn=false:

=

\usepackage [german] {babel}
\usepackage[lang-warn=false] {datatool-base}
\usepackage{glossaries}

Or pass the option before datatool—base is loaded:

\PassOptionsToPackage{lang-warn=false}{datatool-
base}

See the datatool documentation for further details.

The best method to sort terms that use an extended Latin alphabet or non-Latin alphabet is
with glossaries—extra and bib2gls. This means using a b1ib file to store the entry data (see
Option 4). If you prefer to only use the base glossaries package, then xindy (Option 3) is the
best option, but be aware that x 1 ndy is a general purpose indexing application that’s developed
independently of glossaries (as opposed to bib2gls, which is specifically designed for, and
developed alongside, glossaries—extra and therefore provides better integration).

Note also that b1b2gls can support any language provided by the CLDR, whereas x1ndy
only has a limited number of built-in languages (although more can be added).

If you are using a non-Latin script with x1ndy, you may need the xindynogls—
numbers option or use \GlsSetXdyFirstLetterAfterDigits to indi-
cate the first letter group that should follow the number group.

Example 9 demonstrates a document with UTF-8 characters that requires xindy. If you try
this example and encounter errors, check that you have an up-to-date TgX distribution. Note that
with the modern I£TEX kernel, the default encoding is assumed to be UTF-8 so I haven’t bothered
loading the inputenc package.

47

EY

1. Introduction

\documentclass{article}

\usepackage [T1]{fontenc}

\usepackage [main=english,brazilian] {babel}
\usepackage [xindy] {glossaries}

0B

Note the use of the x1indy package option, which ensures that all the indexing information is
written in the correct format.
This example is a multilingual document so a second glossary is defined for the Brazilian terms:

\newglossary*{dictionary}{\glossaryname}

B

I could just supply the actual title, but using the language-sensitive \gl ossaryname (which
is also the title provided for the main glossary) demonstrates the language support.

This document will need to have both glossaries—english and glossaries—
portuges installed in addition to the base glossaries package.

To ensure that the files required by xindy are opened:

\makeglossaries

Now define some English terms:

D LD

\newglossaryentry{élite}{name={élite},
description={select group or class}}
\newglossaryentry{elephant}{name={elephant},
description={large animal with trunk and tusks}}
\newglossaryentry{elk}{name={elk}, description=
{large deer}}

And here are the terms that need to go in the custom “dictionary” glossary:

\newglossaryentry{agua}{name={agua},
type={dictionary},

description={water}}
\newglossaryentry{arvore}{name={4rvore},
type={dictionary},

description={tree}}
\newglossaryentry{ano}{name={ano},

48

1. Introduction

type={dictionary},
description={year}}

The main body of the document contains references using the labels provided in the first argument
of \newglossaryentry and the glossary lists are placed at the desired location, at the end
of each section:

,

\begin{document}

\section{English}

An \gls{elk} and an \gls{elephant} belonged to an
\gls{élite} group.

\printglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{arvore} tive \gls{agua} este \gls{ano}.

\printglossary[type=dictionary]
\end{document}

If the document is saved in the file myDoc . t ex then the document build is:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

49

1. Introduction

4 Example 9: UTF-8 and xindy NERE

1 English

An elk and an elephant belonged to an élite group.

Glossary

elephant large animal with trunk and tusks. 1
élite select group or class. 1

elk large deer. 1

2 Brasileiro

A arvore tive dgua este ano.

Glossario
agua water. 1
ano year. 1

arvore tree. 1

Both the above Example 9 and the following Example 10 may trigger the warning “No ‘data-
tool’ support for dialect ‘brazilian™. This warning comes from the datatool—base package that’s
internally loaded by glossaries. The datatool localisation support is only applicable to \print-
noidxglossary when alphabetical sorting is required. (The datatool—base sorting func-
tion is used for localised alphabetical sorting.)

The lack of datatool localisation support doesn’t affect the glossaries package’s own localisa-
tion support and is not relevant with \printglossaryor \printunsrtglossary.
You can suppress the warning either by loading datatool—base earlier with the option 1ang-
warn=false:

B

\usepackage [main=english,brazilian] {babel}
\usepackage[lang-warn=false] {datatool-base}
\usepackage[xindy] {glossaries}

50

% This file is embedded in glossaries-user.pdf
% Example 9 UTF-8 and xindy
% Label: "ex:xindyutf8"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[xindy]{glossaries}
\newglossary*{dictionary}{\glossaryname}
\makeglossaries
\newglossaryentry{élite}{name={élite},
description={select group or class}}
\newglossaryentry{elephant}{name={elephant},
description={large animal with trunk and tusks}}
\newglossaryentry{elk}{name={elk}, description={large deer}}

\newglossaryentry{água}{name={água},
type={dictionary},
description={water}}
\newglossaryentry{árvore}{name={árvore},
type={dictionary},
description={tree}}
\newglossaryentry{ano}{name={ano},
type={dictionary},
description={year}}
\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an \gls{élite} group.

\printglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printglossary[type=dictionary]
\end{document}

Nicola Talbot
UTF-8 and xindy (source code)
Example document that defines a term with a UTF-8 character (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example009.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example009.pdf

1. Introduction

Or pass the option before datatool—base is loaded:

base}
\usepackage [main=english,brazilian] {babel}
\usepackage[xindy] {glossaries}

\PassOptionsToPackage{lang-warn=false}{datatool-

Example 10 1s a modification of the previous example which uses b1b2gls (and therefore glossaries
requires glossaries—extra). The entry data must now be provided in one or more bib files. For —éxtra

example, the file sample—-ut£8—-en.bib contains:

B10

% Encoding: UTF-8

@entry{élite,

name={élite},

description={select group or class}

}

@dentry{elephant,
name={elephant},
description={large animal with trunk and tusks}

}

@entry{elk,
name={elk},
description={large deer}

}

and the file sample—-utf£8—-pt.bib contains:

% Encoding: UTF-8
@dentry{agua,
name={aguatl,
description={water}

}

dentry{arvore,
name={4arvore},
description={tree}

}

51

1. Introduction

@entry{ano,
name={ano},
description={year}

}

The document now requires glossaries—extra with the record option:

\documentclass{article}

\usepackage [T1l]{fontenc}

\usepackage [main=english,brazilian] {babel}
\usepackage[record] {glossaries—-extra}

As before a custom glossary is defined:

\newglossary*{dictionary}{\glossaryname}

Instead of using \makeglossaries, the document now needs:

\GlsXtrLoadResources |
sort=en, % sort according to English language rules
src={sample-utf8-en}% data in sample-utf8-en.bib

]

\GlsXtrLoadResources |

sort=pt-BR,% sort according to pt-BR language rules
src={sample-utf8-pt},% data in sample-utf8-pt.bib
type=dictionary

]

The main body of the document is similar to the previous example, but a different command is
needed to display the glossary.

\begin{document }

\section{English}

An \gls{elk} and an \gls{elephant} belonged to an
\gls{élite} group.

\printunsrtglossary

52

\.

1. Introduction

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{arvore} tive \gls{dgua} este \gls{ano}.

\printunsrtglossary[type=dictionary]
\end{document}

The document build is slightly different:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

4 Example 10: UTF-8 and bib2gls \ERE
1 English

An elk and an elephant belonged to an élite group.

Glossary
elephant large animal with trunk and tusks 1
élite select group or class 1

elk large deer 1

2 Brasileiro

A arvore tive agua este ano.

Glossario
agua water 1
ano year 1

arvore tree 1

53

% This file is embedded in glossaries-user.pdf
% Example 10 UTF-8 and bib2gls
% Label: "ex:bib2glsutf8"
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-utf8-en.bib}
% Encoding: UTF-8

@entry{élite,
 name={élite},
 description={select group or class}
}

@entry{elephant,
 name={elephant},
 description={large animal with trunk and tusks}
}

@entry{elk,
 name={elk},
 description={large deer}
}
\end{filecontents*}
\begin{filecontents*}{sample-utf8-pt.bib}
% Encoding: UTF-8

@entry{água,
 name={água},
 description={water}
}

@entry{árvore,
 name={árvore},
 description={tree}
}

@entry{ano,
 name={ano},
 description={year}
}
\end{filecontents*}
\usepackage[T1]{fontenc}
\usepackage[main=english,brazilian]{babel}
\usepackage[record]{glossaries-extra}
\newglossary*{dictionary}{\glossaryname}
\GlsXtrLoadResources[
 sort=en,% sort according to English language rules
 src={sample-utf8-en}% data in sample-utf8-en.bib
]
\GlsXtrLoadResources[
 sort=pt-BR,% sort according to pt-BR language rules
 src={sample-utf8-pt},% data in sample-utf8-pt.bib
 type=dictionary
]
\begin{document}
\section{English}
An \gls{elk} and an \gls{elephant} belonged to an \gls{élite} group.

\printunsrtglossary

\selectlanguage{brazilian}
\section{Brasileiro}
A \gls{árvore} tive \gls{água} este \gls{ano}.

\printunsrtglossary[type=dictionary]
\end{document}

Nicola Talbot
UTF-8 and bib2gls (source code)
Example UTF-8 document that defines terms in bib files (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example010.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example010.pdf

1. Introduction

(i]
=
Note that although a non-Latin character, such as €, looks like a plain character in your
tex file, with pdfIsTEX it’s actually a macro and can therefore cause problems. (This
issue doesn’t occur with Xgl&TEX or Lual&TEX which both natively support UTF-8.) Recent
versions of the IKTEX kernel have made significant improvements in handling UTF-8. To
ensure you have the best UTF-8 support, use at least mfirstuc v2.08+ with glossaries v4.50+
(and, if required, glossaries—extra v1.49+). With old TgX distributions, you can’t use
UTF-8 characters in labels.

With old versions of mfirstuc (pre v2.08), if you use a UTF-8 character at the start of an entry
name, you must place it in a group, or it will cause a problem for sentence case commands (e.g.
\G1s). For example:

=

(e}

% mfirstuc v2.07:
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This isn’t necessary with glossaries v4.50+ and mfirstuc v2.08+, and with a newer I£TEX kernel
the UTF-8 character may occur in the label:

=

(e}

% mfirstuc v2.08:
\newglossaryentry{élite}{name={élite},
description={select group or class}}

If you are using xindy or bib2gls, the application needs to know the encoding of the
tex file. This information is added to the aux file and can be picked up by makeglos-
sariesandbib2gls.

Note that make1ndex doesn’t support UTF-8 so, although it can be used with some Latin
alphabet languages, you will need to ensure that the sort value doesn’t contain any UTF-8. If you
have the double-quote character (") as an active character (for example, a babel shorthand) and
you want to use makeindex’s —g (German) option, you'll need to change makeindex’s
quote character using:

X

\GlsSetQuote{(character)}

Note that (character) may not be one of ? (question mark), | (pipe) or ! (exclamation mark).
For example:

=

\GlsSetQuote{+}

54

1. Introduction

This must be done before \makeglossaries and any entry definitions. It’s only applicable
for makeindex. This option in conjunction with ngerman will also cause makeglos-
saries touse the —g switch when invoking make index. For example:

\documentclass{article}

\usepackage [ngerman] {babel}
\usepackage{glossaries}

\GlsSetQuote{+}

\makeglossaries

\newglossaryentry{rna}{name=ribonukleins&dure,
sort={ribonukleins"aure},

description={eine Nukleinsdure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

1.5.1. Changing the Fixed Names

The fixed names are produced using the commands listed in Table 1.2. If you aren’t using a lan-
guage package such as babel or polyglossia that uses caption hooks, you can just redefine these
commands as appropriate. If you are using babel or polyglossia, you need to use their caption
hooks to change the defaults. See changing the words babel uses or read the babel or polyglossia
documentation. If you have loaded babel, then glossaries will attempt to load translator, un-
less you have used the not ranslate,translate=falseortranslate=babel
package options.

[glossaries—extra

The glossaries—extra package defaults to translate=babel if babel has been
loaded.

7

If the translator package is loaded, the translations are provided by dictionary files (for exam-
ple, glossaries—dictionary-English.dict). See the translator package for
advice on changing translations provided by translator dictionaries. If you can’t work out how
to modify these dictionary definitions, try switching to babel’s interface using translate=
babel:

55

https://texfaq.org/FAQ-latexwords

1. Introduction

\documentclass[english, french] {article}
\usepackage{babel}
\usepackage [translate=babel] {glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the language options directly
to babel rather that using the document class options or otherwise passing the same options to
translator, then translator won’t pick up the language and no dictionaries will be loaded and
babel’s caption hooks will be used instead.

Table 1.2.: Customised Text

Command Name Translator Key Word Purpose
\glossaryname Glossary Title of the main glossary.
\acronymname Acronyms Title of the list of acronyms (when
used with package option
acronym).
\entryname Notation Header for first column in the
(glossaries) glossary (for 2, 3 or 4 column
glossaries that support headers).
\descriptionname Description Header for second column in the
(glossaries) glossary (for 2, 3 or 4 column
glossaries that support headers).
\symbolname Symbol Header for symbol column in the
(glossaries) glossary for glossary styles that
support this option.
\pagelistname Page List Header for the page list column in the
(glossaries) glossary for glossaries that support
this option.
\glssymbolsgroupname Symbols Header for symbols section of the
(glossaries) glossary for glossary styles that
support this option.
\glsnumbersgroupname Numbers Header for numbers section of the
(glossaries) glossary for glossary styles that

support this option.

As from version 4.12, multilingual support is provided by separate language modules that
need to be installed in addition to installing the glossaries package. You only need to install
the modules for the languages that you require. If the language module has an unmaintained
status, you can volunteer to take over the maintenance by contacting me at https://www.
dickimaw-books.com/contact. The translator dictionary files for glossaries are
now provided by the appropriate language module. For further details about information specific
to a given language, please see the documentation for that language module.

Examples of use:

56

https://www.dickimaw-books.com/contact
https://www.dickimaw-books.com/contact

1. Introduction

 Using babel and translator:

\documentclass[english, french]{article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).

 Using babel:

\documentclass[english, french]{article}
\usepackage{babel}
\usepackage[translate=babel] {glossaries}

(translator isn’t loaded). The glossaries—extra package has t ranslate=babel as
the default if babel has been loaded.

» Using polyglossia:

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined translations may not be
appropriate. If you are using the babel package and the glossaries package option t ranslate
=babel, you need to be familiar with the advice given in changing the words babel uses. If you
are using the translator package, then you can provide your own dictionary with the necessary
modifications (using \deftranslation)andloaditusing \usedictionary. If you
simply want to change the title of a glossary, you can use the £ it 1 e key in commands like
\printglossary (but not the iterative commands like \printglossaries).
(i]
=
Note that the translator dictionaries are loaded at the beginning of the document, so it

won’t have any effect if you put \deftranslation in the preamble. It should be
put in your personal dictionary instead (as in the example below). See the translator doc-
umentation for further details.

Your custom dictionary doesn’t have to be just a translation from English to another lan-
guage. You may prefer to have a dictionary for a particular type of document. For example,

57

https://texfaq.org/FAQ-latexwords

1. Introduction

suppose your institution’s in-house reports have to have the glossary labelled as “Nomencla-
ture” and the location list should be labelled “Location”, then you can create a file called, say,
myinstitute-glossaries—-dictionary-English.dict that contains the
following:

=

\ProvidesDictionary{myinstitute—-glossaries—
dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries) }{Location}

You can now load it using:

=

\usedictionary{myinstitute—-glossaries-dictionary}

(Make sure thatmyinstitute—glossaries—dictionary—-English.dict can
be found by TgX.) If you want to share your custom dictionary, you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you can use the package
option translate=babel. For example:

\documentclass[british]{article}

\usepackage{babel}
\usepackage [translate=babel] {glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname}{List of Terms}$%
\renewcommand*{\acronymname}{List of Acronyms}%

}

Note that xindy and bib2gls provide much better multi-lingual support than make-
index, solrecommend that you use Options 2 or 3 if you have glossary entries that contain non-
Latin characters. See §14 for further details on xindy, and see the bib2gls user manual
for further details of that application.

1.5.2. Creating a New Language Module

The glossaries package now uses the tracklang package to determine which language modules
need to be loaded. If you want to create a new language module, you should first read the track-
lang documentation.

To create a new language module, you need to at least create two files called: glossaries
—(lang) . 1dfandglossaries—dictionary—(Lang).dict where (lang) is the root

58

http://www.ctan.org/

1. Introduction

language name (for example, english) and (Lang) is the language name used by translator
(for example, English).

Here’s an example of glossaries—dictionary-English.dict:

.

\ProvidesDictionary{glossaries—-dictionary}{English}

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries) }{Notation}
\providetranslation{Description (glossaries) }
{Description}

\providetranslation{Symbol (glossaries) }{Symbol}
\providetranslation{Page List (glossaries)}

{Page List}

\providetranslation{Symbols (glossaries) }{Symbols}
\providetranslation{Numbers (glossaries) }{Numbers}

You can use this as a template for your dictionary file. Change English to the translator
name for your language (so that it matches the file name glossaries—-dictionary—
(Lang) .dict) and, for each \providetranslation, change the second argument to
the appropriate translation.

Here’s an example of glossaries—english.1df:

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{

o\

\@ifpackageloaded{polyglossia}l%
{%
\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{\textenglish
{Glossary}}%
\renewcommand*{\acronymname } { \textenglish
{Acronyms}}%
\renewcommand*{\entryname}{\textenglish
{Notation}}%
\renewcommand*{\descriptionname}{\textenglish

59

1. Introduction

{Description}}%
\renewcommand*{\symbolname}{\textenglish
{Symbol}}%
\renewcommand* {\pagelistname}{\textenglish
{Page List}}%
\renewcommand*{\glssymbolsgroupname}
{\textenglish{Symbols}}%
\renewcommand*{\glsnumbersgroupname }
{\textenglish{Numbers}}%
}%

o\°

t
{

o\°

\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{Glossary}%
\renewcommand* {\acronymname } {Acronyms }%
\renewcommand*{\entryname}{Notation}$%
\renewcommand*{\descriptionname}{Description}

o\

\renewcommand* {\symbolname}{Symbol}%
\renewcommand* {\pagelistname}{Page List}%
\renewcommand*{\glssymbolsgroupname}{Symbols}

o\°

\renewcommand*{\glsnumbersgroupname } {Numbers}

o\

o\

t
}%
\ifcsdef{captions\CurrentTrackedDialect}
{%

\csappto{captions\CurrentTrackedDialect}%

\glossariescaptionsenglish

\ifcsdef{captions\CurrentTrackedLanguage}

{%
\csappto{captions\CurrentTrackedLanguage}%
{%

\glossariescaptionsenglish

o\

}

o\° —~
o\

60

1. Introduction

%

\glossariescaptionsenglish
}
\renewcommand*{\glspluralsuffix}{s}
\renewcommand*{\glsacrpluralsuffix}{\glsplural-
suffix}
\renewcommand*{\glsupacrpluralsuffix}{\glstextup
{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Replace English with
the translator language label (Lang) used for the dictionary file and replace english with
the root language name (lang). Within the definition of \glossariescaptions(lang),
replace the English text (such as “Glossaries”) with the appropriate translation.

The suffixes used to generate the plural forms when the plural hasn’t been specified are given
by \glspluralsuffix (for general entries). For acronyms defined with the base \new-
acronym, \glsupacrpluralsuf fix isused for the small caps acronym styles where
the suffix needs to be set using \glstextup to counteract the effects of \textsc and
\glsacrpluralsuffix forother acronym styles. There’s no guarantee when these com-
mands will be expanded. They may be expanded on definition or they may be expanded on use,
depending on the glossaries configuration.

(]
=
Therefore these plural suffix command definitions aren’t included in the \captions—
(language) hook as that’s typically not implemented until the start of the document. This
means that the suffix in effect will be for the last loaded language that redefined these
commands. It’s best to initialise these commands to the most common suffix required in

your document and use the plural, longplural, shortplural etc keys to
override exceptions.

If you want to add a regional variation, create a file called glossaries—(iso-lang)—(iso-
region) . 1A, where (iso-lang) is the ISO language code and (iso-region) is the ISO country
code. For example, glossaries—en—GB.1df. This file can load the root language file
and make the appropriate changes, for example:

\ProvidesGlossariesLang{en-GB}
\RequireGlossariesLang{english}
\glsifusedtranslatordict{British}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

61

1. Introduction

e
o\°

\@ifpackageloaded{polyglossia}l%s
{%
% Modify \glossariescaptionsenglish as appropriatsg
% polyglossia

o\°

s
{

o\°

% Modify \glossariescaptionsenglish as appropriatg
% non-polyglossia
%
}

174

If the translations includes non-Latin characters, it’s a good idea to provide code that’s inde-
pendent of the input encoding. Remember that while some users may use UTF-8 (and it’s now
the default encoding with modern IATEX kernels), others may use Latin-1 or any other supported
encoding, but while users won’t appreciate you enforcing your preference on them, it’s useful to
provide a UTF-8 version.

The glossaries—irish.1df file provides this as follows:

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}$%
\addglossarytocaptions{\CurrentTrackedDialect}%

}

{

o\°

\ifdefstring{\inputencodingname}{utf8}

{\input{glossaries—irish-utf8.1df}}%

{%
\ifdef\XeTeXinputencoding% XeTeX defaults to UTF-8
{\input{glossaries—irish-utf8.1df}}%
{\input{glossaries—-irish-noenc.1ldf}}

}

\ifcsdef{captions\CurrentTrackedDialect}

{%
\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsirish
%

62

for

for

1. Introduction

J
{%
\ifcsdef{captions\CurrentTrackedLanguage}
{
\csappto{captions\CurrentTrackedLanguage}%
{%
\glossariescaptionsirish
}%
%
{%
J

1%
\glossariescaptionsirish

}

(Again you can use this as a template. Replace 1ri1sh with your root language label and
Irish with the translator dictionary label.)

There are now two extra files: glossaries—irish—noenc.1ldf (no encoding in-
formation) and glossaries—-irish-utf£8.1df (UTF-8).

These both define \glossariescaptionsirishbutthe *~noenc. 1df file uses

IATEX accent commands:

\@ifpackageloaded{polyglossia}l%
{%
\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{\textirish{Gluais}

o\

}
\renewcommand*{\acronymname } {\textirish
{Acrainmneachal}}%
\renewcommand*{\entryname}{\textirish{Ciall}}%
\renewcommand*{\descriptionname}{\textirish
{Tuairisc}}%
\renewcommand* { \symbolname}{\textirish
{Comhartha}l}%
\renewcommand*{\glssymbolsgroupname}{\textirish
{Comhartha\'\1}}%
\renewcommand* { \pagelistname}{\textirish
{Leathanaigh}}%
\renewcommand* {\glsnumbersgroupname}{\textirish
{Uimhreachal}}%

}%

63

1. Introduction

o\

o\°

A

\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{Gluais}$%
\renewcommand*{\acronymname} {Acrainmneacha}$%
\renewcommand*{\entryname}{Ciall}$%
\renewcommand*{\descriptionname}{Tuairisc}%
\renewcommand* {\symbolname}{Comhartha}%
\renewcommand* {\glssymbolsgroupname}

{Comhartha\'\1}%
\renewcommand*{\pagelistname}{Leathanaigh}%
\renewcommand* {\glsnumbersgroupname } {Uimhreacha}

o
°

—~
o\°

}

whereas the *—ut £8 . 1df file replaces the accent commands with the appropriate UTF-8 char-
acters.

1.6. Generating the Associated Glossary Files
A
|

This section is only applicable if you have chosen Options 2 or 3. You can ignore this
section if you have chosen any of the other options. (For Option 4, see the bib2gls
manual for details.) If you want to alphabetically sort your entries always remember to
use the sort key if the name contains any ISIEX commands (except if you’re using
bib2gls).

If this section seriously confuses you, and you can’t work out how to run external tools like
makeglossaries or makeindex, you can try using the aut omake package option,
described in §2.5, but you will need TgX’s shell escape enabled. See also Incorporating makeglos-
saries or makeglossaries-lite or bib2gls into the document build.!! Since makeindex is on the
trusted list, the restricted shell escape may be used, which is safer than the unrestricted mode.
For example:

=

\usepackage [automake] {glossaries}
\makeglossaries

If the document source is in the file myDoc . t ex then this requires:

"dickimaw—books.com/latex/buildglossaries/

64

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

pdflatex —-shell-restricted myDoc
pdflatex —-shell-restricted myDoc

(you may find that —shell-restricted is the default for your system, in which case it
may be omitted). Whereas:

=

\usepackage [xindy, automake] {glossaries}
\makeglossaries

requires:

pdflatex —-shell-escape myDoc
pdflatex —-shell-escape myDoc

Be aware that this unrestricted mode is a security risk, so it’s best avoided.

In order to generate a sorted glossary with compact number lists, it is necessary to use an
external indexing application as an intermediate step (Option 1, which uses TEX to do the sort-
ing, can’t compact number lists). It is this application that creates the file containing the code
required to typeset the glossary. If this step is omitted, the glossaries will not appear in your
document.

The two oldest indexing applications most commonly used with KTEX are makeindex and
xindy. The glossaries package can be used with either of these applications. Any other ap-
plication that can support makeindex’s syntax and style file may be used instead of make-
index. Simply follow the makeindex instructions and substitute the call to makeindex
with the appropriate call to the alternative.

Commands that only have an effect when xindy is used are described in §14.

(i]
=
This is a multi-stage process, but there are methods of automating document compila-

tion using applications such as 1atexmk and arara. With arara you can just add
special comments to your document source:

B

o\

arara: pdflatex
arara: makeglossaries
% arara: pdflatex

o\°

With 1atexmk you need to set up the required dependencies.

The glossaries package comes with the Perl script makeglossaries which will run
makeindex or xindy on all the indexing files using a customized style file (which is cre-

65

1. Introduction

ated by \makeglossaries). See §1.6.1 for further details. Perl is stable, cross-platform,
open source software that is used by a number of TgX-related applications (including xindy
and latexmk). Most Unix-like operating systems come with a Perl interpreter. TgX Live
also comes with a Perl interpreter. As far as I know, MikTgX doesn’t come with a Perl in-
terpreter so if you are a Windows MikTgX user you will need to install Perl if you want to
use makeglossaries or xindy. Further information is available at http://www.
perl.org/about .html and MikTeX and Perl scripts (and one Python script).!?
The advantages of usingmakeglossaries:

It automatically detects whether to use makeindex or x1ndy and sets the relevant
application switches.

One call of makeglossaries will run makeindex/xindy for each glossary
type.

If things go wrong, makeglossaries will scan the messages from makeindex
or xindy and attempt to diagnose the problem in relation to the glossaries package.
This will hopefully provide more helpful messages in some cases. If it can’t diagnose the
problem, you will have to read the relevant transcript file and see if you can work it out
from the makeindex or xindy messages.

If makeindex warns about multiple encap values, makeglossaries v2.18+ will
detect this and attempt to correct the problem. This correction is only provided by make-
glossaries whenmakeindexisusedsince xindy uses the order of the attributes
list to determine which format should take precedence. (see §14.3.) This correction can
be switched off with the —e switch.

If makeindex warns about invalid or empty locations, makeglossaries v4.50+
will detect this and attempt to alter the location to fit makeindex’s syntax. This may
or may not cause unexpected results in the location list, but it’s useful if the nonumber-
11 st option is used.

If makeindex hasawarning that could be the result of a command occurring within the
location, makeglossaries v4.50+ will attempt to repair it by moving the command
out of the location and into the encap.

If the output directory has been set when running ISIEX (which puts all the associated files
in another directory), makeglossaries hasa —d switch that can be used to identify
the output directory. This means that makeglossaries can change to that directory
before running makeindex or xindy.

The first two items also apply to makeglossaries—1lite.

As from version 4.16, the glossaries package also comes with a Lua script called makeglos-
saries—1ite. Thisisatrimmed-down alternative to the makeglossaries Perl script.
It doesn’t have some of the options that the Perl version has and it doesn’t attempt to diagnose

2tex.stackexchange.com/questions/158796

66

http://www.perl.org/about.html
http://www.perl.org/about.html
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

any problems, but since modern TgX distributions come with LuaTgX (and therefore have a Lua
interpreter) you don’t need to install anything else in order touse makeglossaries—1lite
so it’s an alternative to makeglossaries if you want to use Option 2 (makeindex).
If things go wrong and you can’t work out why your glossaries aren’t being generated correctly,
you can use makeglossariesguil as a diagnostic tool. Once you’ve fixed the problem,
you can then go back to using makeglossaries ormakeglossaries—1lite.
Whilst I strongly recommended that you use the makeglossaries Perl script or the
makeglossaries—1ite Lua script, it is possible to use the glossaries package without
using those applications. However, note that some commands and package options have no effect
if you explicitly run makeindex/xindy. These are listed in Table 1.3.
(i]
If you are choosing not to use makeglossaries because you don’t want to install

Perl, you will only be able to use make index as xindy also requires Perl. (Other use-
ful Perl scripts include epst opdf and 1 atexmk, soit’s well-worth the effort to install
Perl.) Alternatively, if you have Java installed, switch to glossaries—extraand bib2gls.

Below, references to makeglossaries can usually be substituted with makeglos-
saries—11ite, except where noted otherwise.

If any of your entries use an entry that is not referenced outside the glossary (for example, the
entry is only referenced in the description of another entry), you will need to do an additional
makeglossaries, makeilndex or xindy run, as appropriate. For example, suppose
you have defined the following entries:

,

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange}) }}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

and suppose you have \gls{citrusfruit} in your document but don’t reference the
“orange” entry, then the orange entry won’t appear in your glossary until you first create the
glossary and then do another run of makeglossaries, makeindex or xindy. For
example, if the document is called myDoc . t ex, then you must do:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

67

1. Introduction

(In the case of Option 4, bib2gls will scan the description for instances of commands like
\gls toensure they are selected but an extralbib2gls call is required to ensure the locations
are included, if location lists are required. See the bib2gl s manual for further details.)

Likewise, an additional makeglossaries and ISIEX run may be required if the docu-
ment pages shift with re-runs. For example, if the page numbering is not reset after the table of
contents, the insertion of the table of contents on the second IATEX run may push glossary entries
across page boundaries, which means that the number lists in the glossary may need updating.

The examples in this document assume that you are accessingmakeglossaries, xindy
or makeindex via a terminal. Windows users can use the command prompt which is usu-
ally accessed via the Start =¥ All Programs menu or Start =» All Programs =¥ Accessories menu or
Start =» Windows System.

Alternatively, your text editor may have the facility to create a function that will call the re-
quired application. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the
document build."?

If any problems occur, remember to check the transcript files (e.g. g1 g or a 1 g) for messages.

Table 1.3.: Commands and package options that have no effect when using xindy or make—
index explicitly

Command or Package Option makeindex xindy
order=letter use —1 use -M ord/letorc
order=word default default
xindy={language={lang}, codepage={code}} N/A use —L (lang) —C {co
\GlsSetXdyLanguage{(lang)} N/A use —L (lang)
\GlsSetXdyCodePage{{code)} N/A use —C (code)

1.6.1. Using the makeglossaries Perl Script

makeglossaries (options) (aux-file) \

The makeglossaries script picks up the relevant information from the auxiliary (aux)
file and will either call x 1 ndy ormakeindex, depending on the supplied information. There-
fore, you only need to pass the document’s name without the extension tomakeglossaries.
For example, if your document is called myDoc . t ex, type the following in your terminal:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

Bdickimaw-books.com/latex/buildglossaries/

68

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

If you only want one glossary processed (for example, if you are working on a draft of a large
document and want to concentrate on one specific glossary) then include the (our-ext) extension
supplied to \newglossary,suchas glo for the ma in glossary. Note that if you do specify
the extension and your document has multiple glossaries defined, then makeglossaries
will tell you how many glossaries have been ignored unless the —q switch has been used.

Windows users: TgX Live on Windows has its own internal Perl interpreter and provides
makeglossaries.exe asaconvenient wrapper for themakeglossaries Perlscript.
MikTgX also provides a wrapper makeglossaries . exe but doesn’t provide a Perl inter-
preter (as far as [know), which is still required even if yourun MikTgX’smakeglossaries.exe,
so with MikTEX you’'ll need to install Perl. There’s more information about this at MikTeX and
Perl scripts (and one Python script).'*

When upgrading the glossaries package, make sure you also upgrade your version of
makeglossaries. The current version is 4.59.

Some of the options are only applicable to makeindex and some are only applicable to

xindy.
[=
=
——help
Shows a summary of all available options.
[=
=
——version
Shows the version details.
l E
=
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

=3

s

—d (directory)

Instructs makeglossaries to change to the given directory, which should be where the
aux, glo etc files are located. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries —-d myTmpDir myDoc

“tex.stackexchange.com/questions/158796

69

https://tex.stackexchange.com/questions/158796
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

I —

|

=S

Don’t check for multiple encaps (only applicable with make index). By default, if you are us-
ingmakeindex,makeglossaries will check the makeindex transcript for multiple
encap warnings.

The multiple encap warning is where different location encap values (location formats) are
used on the same location for the same entry. For example:

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description=
{an example}}

\begin{document}

\gls{sample}, \gls[format=textbf]{sample}.
\printglossaries

\end{document}

If you explicitly use makeindex, this will cause a warning and the location list will be “I,
17. That is, the page number will be repeated with each format. As from v2.18, makeglos-
saries will check for this warning and, if found, will attempt to correct the problem by re-
moving duplicate locations and retrying. If you actually want the duplicate location, you can
prevent makeglossaries from checking and correcting the duplicates with —e.
There’s no similar check for xindy as xindy won’t produce any warning and will simply
discard duplicates.
=n

|

-d

Suppresses messages. The makeglossaries script attempts to fork the makeindex/
xindy process using open () on the piped redirection 2>&1 | and parses the processor
output to help diagnose problems. If this method fails makeglossaries will print an “Un-
able to fork” warning and will retry without redirection. Without this redirection, the —q switch
doesn’t work as well. Some operating systems don’t support redirection. —=

|

—Q

Suppresses the “Unable to fork” warning.

70

1. Introduction

-k

Don’t attempt redirection.

—m (application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

If you want to use an application that is capable of reading makeindex files (including
support for makeindex style files via —s), then you can use —m to specify the alternative
application to use instead of makeindex. Note that both xindex and texindy can read
makeindex files using the default makeindex syntax but, as of the time of writing this,
they don’t support makeindex style files.

==

—x (application)

The x1ndy application. Only the name is required if it’s on the operating system’s path, other-
wise the full path name will be needed.
([=

| S

e

Compress intermediate blanks. This will pass —c tomakeindex. (Ignored if xindy should

be called.)
I —

—

-r

Disable implicit page range formation. This will pass —r tomakeindex. (Ignoredif x1ndy
should be called.)
=

=

—p (num)

Set the starting page number. This will pass —p (num) to makeindex. (Ignored if xindy
should be called.)
The following switches may be used to override settings written to the aux file.

I —

|

-1

Use letter ordering. This will pass —1 tomakeindexor-M ord/letordertoxindy.

==

~L (language)

The language to pass to x1ndy. (Ignored if makeindex should be called.)

71

1. Introduction

I —

|

-9

Employ German word ordering. This will pass —g tomake index. (Ignored if x1ndy should

be called.)
[=<

e

—s (filename)

Set the style file. This will pass —s (filename) tomakeindex or —M (basename) to xindy
(where (basename) is (filename) with the xdy extension removed). This will generate an error
if the extension is xdy when make 1 ndex should be called, or if the extension isn’t xdy when
x1indy should be called.

e

—o (filename)

Sets the output file name. Note that this should only be used when only one glossary should be
processed. The default is to set the output filename to the basename supplied to makeglos-
saries with the extension associated with the glossary (the (in-ext) argument of \new-

glossary).
=

==

—t (filename)

Sets the transcript file name. Note that this should only be used when only one glossary should be
processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the (log-ext) argument of \new-
glossary).

1.6.2. Using the makeglossaries—1lite Lua Script

makeglossaries-lite (options) (aux-file) \

The Lua alternative to the makeglossaries Perl script requires a Lua interpreter, which
should already be available if you have a modern TgX distribution that includes LuaTEX. Lua is
a light-weight, cross-platform scripting language, but because it’s light-weight it doesn’t have the
full-functionality of heavy-weight scripting languages, such as Perl. The makeglossaries
—11ite scriptis therefore limited by this and some of the options available to the makeglos-
saries Perl script aren’t available here. (In particular the —d option.) Whilst it may be
possible to implement those features by requiring Lua packages, this would defeat the purpose of
providing this script for those don’t want the inconvenience of learning how to install interpreters
or their associated packages.

72

1. Introduction

[©
= |
The script is actually supplied as makeglossaries—1lite.lua but TgX dis-
tributions on Windows convert this to an executable wrapper makeglossaries—
lite.exe and TgX Live on Unix-like systems provide a symbolic link without the
extension.

7

The makeglossaries—1ite script can be invoked in the same way as makeglos-
saries. For example, if your document is called myDoc . tex, then do

makeglossaries—lite myDoc

Note that the arara rule doesn’t contain the hyphen:

% arara: makeglossarieslite

ﬂ

Some of the options are only applicable to makeindex and some are only applicable to
xindy. There’s no equivalent to the —d available to makeglossaries but it may work
if you prefix the basename with the path.

(=
L=
——help
Shows a summary of all available options.
[=
L=
——version
Shows the version details.
[=
L=
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

I E
=
-9
Quiet mode. This suppresses some but not all messages.
[=
G

—m (application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

73

1. Introduction

s

—x (application)

The xindy application. Only the name is required if it’s on the operating system’s path, other-
wise the full path name will be needed.
[=

|

e

Compress intermediate blanks. This will pass —c to makeindex. (Ignored if xindy should

be called.)
I —

|

-r

Disable implicit page range formation. This will pass —r tomakeindex. (Ignored if xindy
should be called.)
=

==

—p (num)

Set the starting page number. This will pass —p (num) to makeindex. (Ignored if xindy
should be called.)
The following switches may be used to override settings written to the aux file.

I E
=
-1
Use letter ordering. This will pass —1 tomakeindexor-M ord/letorder toxindy.
[=
U
~L (language)
The language to pass to xindy. (Ignored if makeindex should be called.)
I E
=

-9

Employ German word ordering. This will pass —g tomake index. (Ignored if xindy should
be called.)

[=
=
—s (filename)
Set the style file.
[=
=
—o (filename)

Sets the output file name. Note that this should only be used when only one glossary should be
processed. The default is to set the output filename to the basename supplied to makeglos-

74

1. Introduction

saries with the extension associated with the glossary (the (in-ext) argument of \new-

glossary).
li:

==

—t (filename)

Sets the transcript file name. Note that this should only be used when only one glossary should be
processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the (log-ext) argument of \new-
glossary).

1.6.3. Using xindy explicitly (Option 3)

xindy comes with TEX Live. It has also been added to MikTgX, but if you don’t have it
installed, see How to use Xindy with MikTeX.!?

If you want to use xindy to process the glossary files, you must make sure you have used
the x i ndy package option:

Ej

\usepackage[xindy] {glossaries}

This is required regardless of whether you use x indy explicitly or whether it’s called implicitly
via applications such as makeglossaries. This causes the glossary entries to be written in
raw x1ndy format, so youneed touse —I xindy not -1 tex.

To run x1ndy type the following in your terminal (all on one line):

xindy -L (language) —C (encoding) —1 xindy -M (style) —t
(base) .glg —o (base).gls (base).glo

where (language) is the required language name, (encoding) is the encoding, (base) is the name
of the document without the t ex extension and (style) is the name of the xindy style file
without the xdy extension. The default name for this style file is (base)xdy but can be changed
via \setStyleFile. As usual for command line applications, if any of the file names
contain spaces, you must delimit them using double-quotes.

For example, if your document is called myDoc . t ex and you are using UTF-8 encoding in
English, then type the following in your terminal:

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg —-o myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the same for each of the
other glossaries (including the list of acronyms if you have used the a ¢ r onym package option),

Btex.stackexchange.com/questions/71167

75

https://tex.stackexchange.com/questions/71167
http://tex.stackexchange.com/questions/71167

1. Introduction

substituting g1g, gls and glo with the relevant extensions. For example, if you have used
the a cronym package option, then you would need to do:

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.alg —-o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with
\newglossary.
Note that if you use makeglossaries instead, you can replace all those calls to xindy
with just one call to makeglossaries:

makeglossaries myDoc \

Note also that some commands and package options have no effect if you use x1indy explicitly
instead of using makeglossaries. These are listed in Table 1.3.

1.6.4. Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you haven’t used the
xindy package option or the glossary entries will be written in the wrong format. To run
makeindex, type the following in your terminal:

makeindex -s (style).ist -t (base).glg —o (base).gls
(base) .glo

where (base) is the name of your document without the t ex extension and (style)ist is the
name of the makeindex style file. By default, this is (base)ist, but may be changed via
\setStyleFile. Note that there are other options, such as —1 (letter ordering). See the
makeindex manual for further details.

For example, if your document is called myDoc . tex, then type the following at the termi-
nal:

makeindex -s myDoc.ist -t myDoc.glg —-o myDoc.gls
myDoc.glo

Note that this only creates the main glossary. If you have additional glossaries (for example,
if you have used the acronym package option) then you must call makeindex for each
glossary, substituting glg, gls and glo with the relevant extensions. For example, if you
have used the ac ronym package option, then you need to type the following in your terminal:

76

1. Introduction

makeindex -s myDoc.ist -t myDoc.alg —-o myDoc.acr
myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with
\newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to make-
index with just one call to makeglossaries:

makeglossaries myDoc \

Note also that some commands and package options have no effect if you use makeindex
explicitly instead of using makeglossaries. These are listed in Table 1.3.

1.7. Note to Front-End and Script Developers

The information needed to determine whether to use xindy, makeindex or bib2gls
is stored in the aux file. This information can be gathered by a front-end, editor or script to
make the glossaries where appropriate. This section describes how the information is stored in
the auxiliary file. See also “Decyphering the Aux File Commands Provided by glossaries.sty and

glossaries-extra.sty'®”.

1.7.1. Makelndex and Xindy

The file extension of the indexing files used for each defined glossary (not including any ignored
glossaries) are given by:

X

\@newglossary{ (glossary-label) } { (log) } { (out-ext) } { (in-ext) }

where (in-ext) is the extension of the indexing application’s input file (the output file from the
glossaries package’s point of view), such as glo, (out-ext) is the extension of the indexing
application’s output file (the input file from the glossaries package’s point of view), suchas gls,
and (log) is the extension of the indexing application’s transcript file, such as g1g. The label for
the glossary is also given. This isn’t required with makeindex, but with xindy it’s needed
to pick up the associated language and encoding (see below). For example, the information for
the default ma i n glossary is written as:

B

[\@newglossary{main}{glg}{gls}{glo}

6dickimaw-books.com/latex/auxglossaries

77

https://www.dickimaw-books.com/latex/auxglossaries
https://www.dickimaw-books.com/latex/auxglossaries
https://www.dickimaw-books.com/latex/auxglossaries

1. Introduction

If glossaries—extra’s hybrid method has been used (with \makeglossaries[(sub-list)]),
then the sub-list of glossaries that need to be processed will be identified with:

X

[\glsxtr@makeglossaries{ (label-list)}

The indexing application’s style file is specified by:

\@istfilename({ (filename)}

The file extension indicates whether to use makeindex (ist) or xindy (xdy). Note
that the glossary information has a different syntax depending on which indexing application is
supposed to be used, so it’s important to call the correct one.

For example, with arara you can easily determine whether to run makeglossaries:

[e)

% arara:
makeglossaries if found("aux", "@istfilename")

It’s more complicated if you want to explicitly run makeindex or xindy.

[i
=
Note that if you choose to explicitly call make index or x i ndy then the user will miss

out on the diagnostic information and the encap-clash fix that makeglossaries also
provides.

Word or letter ordering is specified by:

\@glsorder{(order)}

where (order) can be either word or 1etter (obtained from the o rder package option).
If xindy should be used, the language for each glossary is specified by:

X

\@xdylanguage {(glossary-label) } { (language) }

where (glossary-label) identifies the glossary and (language) is the root language (for example,
english).
The codepage (file encoding) for all glossaries is specified by:

\@gls@codepage{{(code-page) }

78

1. Introduction

where (code) is the encoding (for example, ut £8). The above two commands are omitted if

makeindex should be used.
If Option 1 has been used, the aux file will contain

\@gls@reference{ (type)} {(label)} { (location) }

for every time an entry has been referenced.

1.7.2. Entry Labels

If you need to gather labels for auto-completion, the writeglslabels package option will
create a file containing the labels of all defined entries (regardless of whether or not the entry
has been used in the document). As from v4.47, there is a similar option writeglslabel-

names that writes both the label and name (separated by a tab).

[glossaries—extra]

glsdefs file but will act like docdef=restricted.

The glossaries—extra package also provides docde f=atom, which will create the

1.7.3. Bib2Gls

If Option 4 has been used, the aux file will contain one or more instances of:

\glsxtr@resource{(options)} { (basename) }

where (basename) is the basename of the g1 st ex file that needs to be created by bib2gls.
If src={(bib list)} isn’t present in (options) then (basename) also indicates the name of the

associated b1b file.
For example, with arara you can easily determine whether or not torun bib2gls:

[e)

% arara: bib2gls if found ("aux", "glsxtr@resource")

Ei

(Tt gets more complicated if both \glsxtr@resourceand \@ist filename are present

as that indicates the hybrid record=hybrid option.)

Remember that with bib2gls, the glossary entries will never be defined on the first ISTEX
call (because their definitions are contained in the gl stex file created by bib2gls). You

can also pick up labels from the records in aux file, which will be in the form:

X

\glsxtr@record{ (label)} { (h-prefix) } { (counter) } { (format) } { (loc) }

or (with record=nameref):

79

bib2gls

1. Introduction

\glsxtr@record@nameref {(label)} { (href
prefix) } { (counter) } { (format) } { (location) } { (title) } { (href anchor) } { {href value) }

or (with \glssee):

\glsxtr@recordsee{ (label)} { (xrlist)}

You can also pick up the commands defined with \ gl sxt rnewglslike, which are added
to the aux file for bib2gls’s benefit:

b §
\Qglsxtr@newglslike {(label-prefix)} { {(cs)}
If \GlsXtrSetAltModifier isused, then the modifier is identified with:
X
\Q@glsxtr@altmodifier{(character)}
Label prefixes (for the \dg 1 s set of commands) are identified with:
) §

\@glsxtr@prefixlabellist {(lst)}

80

2. Package Options

This section describes the available glossaries package options. You may omit the =t rue for
boolean options. (For example, acronym is equivalent to acronym=t rue).

[glossaries—extra

The glossaries—extra package has additional options described in the glossaries—extra
manual. The extension package also has some different default settings to the base pack-
age. Those that are available at the time of writing are included here. Future versions of
glossaries—extra may have additional package options or new values for existing settings
that aren’t listed here.

(i]
=
Note that (key)=(value) package options can’t be passed via the document class options.
(This includes options where the (value) part may be omitted, such as acronym.) This

is a general limitation not restricted to the glossaries package. Options that aren’t (key)=
(value) (such as make index) may be passed via the document class options.

2.1. General Options
=)

|

nowarn

This suppresses all warnings generated by the glossaries package. Don’t use this option if you're
new to using glossaries as the warnings are designed to help detect common mistakes (such as
forgetting to use \makeglossaries). Note that if you use debug with any value other
than £alse it will override this option.

l E
=
nolangwarn
This suppresses the warning generated by a missing language module.
[=
=
noredefwarn

If you load glossaries with a class or another package that already defines glossary related com-
mands, by default glossaries will warn you that it’s redefining those commands. If you are aware
of the consequences of using glossaries with that class or package and you don’t want to be

81

2. Package Options

warned about it, use this option to suppress those warnings. Other warnings will still be issued
unless you use the nowa rn option described above. (This option is automatically switched on

by glossaries—extra.)
=

=
debug=(value) initial: false

Debugging mode may write information to the transcript file or add markers to the document.
The following values are available:
E
(A

debug=false

Switches off debugging mode.

3

debug=true

This will write the following line to the transcript file if any attempt at indexing occurs before
the associated files have been opened by \makeglossaries:

wrglossary ((glossary-type)) ((indexing info))

Note that this setting will also cancel nowa rn.

3

debug=showtargets

As debug=true but also adds a marker where the glossary-related hyperlinks and targets
occur in the document.
The debug=showtarget s option will additionally use:

\glsshowtarget { (target name)}

to show the hypertarget or hyperlink name when \glsdohypertarget is used by com-
mands like \glstarget andwhen \gl sdohyperlink isused by commandslike \gls.
In math mode or inner mode, this uses:

X

\glsshowtargetinner{(rarget name)}

which typesets the target name as:

~

[\glsshowtarget fonttext {(target name)}]

just before the link or anchor. This uses the text-block command:

82

2. Package Options

\glsshowtargetfonttext {(text)}

which checks for math-mode before applying the font change. In outer mode \glsshow-
target uses:

b §
\glsshowtargetouter{ (rarget name) }
which by default places the target name in the margin with a symbol produced with:
b §
\glsshowtargetsymbol { (target name) }

which defaults to a small right facing triangle.
The fontused by both \glsshowtarget fonttext and \glsshowtargetouter
is given by the declaration:

X
\glsshowtargetfont initial: \tt family\footnotesize

B

| S

debug=showaccsupp

As debug=t rue but also adds a marker where the glossary-related accessibility information
occurs (see glossaries—accsupp) using:

X

\glsshowaccsupp/{ (options) } { (PDF element) } { (value) }

[glossaries—extra

The glossaries—extra package provides extra values debug=showwrgloss, that
may be used to show where the indexing is occurring, and debug=all, which switches
on all debugging options. See the glossaries—extra manual for further details.

J

The purpose of the debug mode can be demonstrated with the following example document:

Ej

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{samplel}{name={samplel}
,description={example}}

83

2. Package Options

\newglossaryentry{sample2}{name={sample2}
,description={example}}

\glsadd{sample2}% <- does nothing here
\makeglossaries

\begin{document}

\gls{samplel}.

\printglossaries

\end{document }

In this case, only the “samplel” entry has been indexed, even though \glsadd{sample?2}
appears in the source code. This is because \ gl sadd{sample?2 } has been used before the
associated file is opened by \makeglossaries. Since the file isn’t open yet, the informa-
tion can’t be written to it, which is why the “sample2” entry doesn’t appear in the glossary.

Without \makeglossaries the indexing is suppressed with Options 2 and 3 but, other
than that, commands like \ g1 s behave as usual.

This situation doesn’t cause any errors or warnings as it’s perfectly legitimate for a user to want
to use glossaries to format the entries (for example, to show a different form on first use) but
not display any glossaries (or the user may prefer to use the unsorted Options 5 or 6). It’s also
possible that the user may want to temporarily comment out \makeglossaries in order
to suppress the indexing while working on a draft version to speed compilation, or the user may
prefer to use Options 1 or 4 for indexing, which don’t use \makeglossaries.

Therefore \makeglossaries can’t be used to enable \newglossaryentry and
commands like \gls and \glsadd. These commands must be enabled by default. (It does,
however, enable the see key as that’s a more common problem. See below.)

The debug mode, enabled with the debug option,

=

\usepackage [debug] {glossaries}

will write information to the log file when the indexing can’t occur because the associated file
isn’t open. The message is written in the form

Package glossaries Info: wrglossary ({(type)) ({text)) on
input line (line number) .

where (type) is the glossary label and (zexr) is the line of text that would’ve been written to the
associated file if it had been open. So if any entries haven’t appeared in the glossary but you're
sure you used commands like \glsadd or \glsaddall, try switching on the debug
option and see if any information has been written to the log file.

84

2. Package Options

[

=
savewrites=(boolean) default: true; initial: false

This is a boolean option to minimise the number of write registers used by the glossaries package.
The default is savewrites=false. With Options 2 and 3, one write register is required
per (non-ignored) glossary and one for the style file.

o

[In general, this package option is best avoided.

With all options except Options 1 and 4, another write register is required if the gl sdefs
file is needed to save document definitions. With both Options 1 and 4, no write registers are
required (document definitions aren’t permitted and indexing information is written to the aux
file). If you really need document definitions but you want to minimise the number of write
registers then consider using docde f=restricted with glossaries—extra.

There are only a limited number of write registers, and if you have a large number of glossaries
or if you are using a class or other packages that create a lot of external files, you may exceed
the maximum number of available registers. If savewrites is set, the glossary information
will be stored in token registers until the end of the document when they will be written to the
external files.

(i]
=
This option can significantly slow document compilation and may cause the indexing to

fail. Page numbers in the number list will be incorrect on page boundaries due to TgX’s
asynchronous output routine. As an alternative, you can use the scrwfile package (part of
the KOMA-Script bundle) and not use this option.

By way of comparison, sample—-multiZ2.tex provided with bib2gls has a total of
15 glossaries. With Options 2 or 3, this would require 46 associated files and 16 write registers.
(These figures don’t include standard files and registers provided by the kernel or hyperref, such
as aux and out.) With bib2gls, no write registers are required and there are only 10
associated files for that particular document (9 resource files and 1 transcript file).

[i
=
If you want to use TgX’s shell escape to call makeindex or xindy from your docu-

ment and use savewrites, then use automake=immediate or automake
=makegloss orautomake=1lite.

=
translate=(value) default: t rue; initial: varies

This can take one of the values listed below. If no supported language package has been loaded
the default is translate=false otherwise the default is t ranslate=true for the

85

2. Package Options

base glossaries package and t ranslate=babel for glossaries—extra.

B

| S

translate=true

If babel has been loaded and the translator package is installed, translator will be loaded and the
translations will be provided by the translator package interface. You can modify the trans-
lations by providing your own dictionary. If the translator package isn’t installed and babel
is loaded, the glossaries—babel package will be loaded and the translations will be provided
using babel’s \addto\capt ions(language) mechanism. If polyglossia has been loaded,
glossaries—polyglossia will be loaded.

(o]

| S

translate=false

Don’t provide translations, even if babel or polyglossia has been loaded. (Note that babel provides
the command \glossaryname so that will still be translated if you have loaded babel.)

(&
(A
translate=babel
Don’t load the translator package. Instead load glossaries—babel.
i

=
I recommend you use translate=babel if you have any problems with the trans-

lations or with PDF bookmarks, but to maintain backward compatibility, if babel has been
loaded the defaultis t ranslate=true.

See §1.5.1 for further details.
l —

| S

notranslate

This is equivalent to t rans 1 ate=false and may be passed via the document class options.

| —

| S

languages

This automatically implements t ranslate=babel (which means that translator won’t au-
tomatically be loaded) but will also add the list of languages to tracklang’s list of tracked lan-
guages. Each element in the (list) may be an ISO language tag (such as pt —BR) or one of
tracklang’s known language labels (such as british).

I E
=
locales alias: languages

Synonym of 1anguages.

86

2. Package Options

[©

(=
hyperfirst=(boolean) default: true; initial: true

If true, terms on first use will have a hyperlink, if supported, unless the hyperlink is explicitly
suppressed using starred versions of commands such as \ g1 s*. If false, only subsequent use
instances will have a hyperlink (if supported).

Note that nohypertypes overrides hyperfirst=true. This option only affects
commands that check the first use flag, such as the \ g1 s-like commands (for example, \g1ls or
\glsdisp), but not the \ gl stext-like commands (for example, \glslink or \gls-
text).

The hyperfirst setting applies to all glossary types (unless identified by nohyper-
types or defined with \newignoredglossary). It can be overridden on an individual
basis by explicitly setting the hyper key when referencing an entry (or by using the plus or
starred version of the referencing command).

It may be that you only want to suppress hyperlinks for just the acronyms (where the first use
explains the meaning of the acronym) but not for ordinary glossary entries (where the first use
is identical to subsequent use). In this case, you can use hyperfirst=false and apply
\glsunsetall to all the regular (non-acronym) glossaries. For example:

\usepackage [acronym, hyperfirst=false] {glossaries}

(e}

% acronym and glossary entry definitions

o

% at the end of the preamble
\glsunsetall [main]

Alternatively you can redefine the hook

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such as \ g1 s. Within the definition
of this command, you can use \glslabel to reference the entry label and \glstype to
reference the glossary type. You can also use \1fglsused to determine if the entry has
been used. You can test if an entry is an acronym by checking if it has the 1 ong key set using
\ifglshaslong (or if the short key has been set using \ifglshasshort). For
example, to switch off the hyperlink on first use just for acronyms:

Ei

\renewcommand*{\glslinkcheckfirsthyperhook}{$%
\ifglsused{\glslabel}{}%
{%
\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=

87

2. Package Options

false}}%
+%
}

Note that this hook isn’t used by the commands that don’t check the first use flag, such as
\glstext. (You can, instead, redefine \glslinkpostsetkeys, which is used by
both the \ g1 s-like and \ g1 stext-like commands.)

[glossaries—extra

The glossaries—extra package provides a method of disabling the first use hyperlink ac-
cording to the entry’s associated category. For example, if you only want to switch
off the first use hyperlink for abbreviations then you simply need to set the nohyper—
f1rst attribute for the abbreviation and, if appropriate, acronym categories. (Instead of
using the hyper first package option.) See the glossaries—extra manual for further
details.

I —

|

writeglslabels

This option will create a file called \ jobname .glslabels at the end of the document.
This file simply contains a list of all defined entry labels (including those in any ignored glos-
saries). It’s provided for the benefit of text editors that need to know labels for auto-completion.
If you also want the name, use writeglslabelnames. (See also glossaries—extra’s
docde f=at om package option.)

[bib2gls ‘

Note that with bib2g1ls the file will only contain the entries that bib2gls has se-
lected from the bib files.

I —

|

writeglslabelnames

Similar to writeglslabels but writes both the label and name (separated by a tab).

=
undefaction=(value) initial: exrror

Only available with glossaries—extra, the value for this option may be one of:

3

undefaction=error

Generates an error if a referenced entry is undefined (default, and the only available setting with
just the base glossaries package).

88

2. Package Options

B

(A
undefaction=warn
Only warns if a referenced entry is undefined (automatically activated with Option 4).
(=
=
docde f=(value) default: true; initial: false

Only available with glossaries—extra, this option governs the use of \newglossary-
entry. Available values:
[&

| S

docdef=false

This setting means that \newglossaryentry is not permitted in the document environ-
ment (default with glossaries—extra and for Option 1 with just the base glossaries package).

B

| S

docdef=restricted

This setting means that \newglossaryentry is only permitted in the document environ-
ment if it occurs before \printglossary (not available for some indexing options, such

as Option 4).
[&

\

docdef=atom

This setting is as docdef=restricted but creates the gl sde f s file for use by at om
(without the limitations of docde f=t rue).
[&

| S

docdef=true

This setting means that \newglossaryentry is permitted in the document environment
where it would normally be permitted by the base glossaries package. This will create the
glsdefsfileif \newglossaryentry is found in the document environment.

2.2. Sectioning, Headings and TOC Options

=
toc=(boolean) default: txue; initial: varies

Adds the glossaries to the table of contents (t oc file). Note that an extra ISIgX run is required
with this option. Alternatively, you can switch this function on and off using

X

\glstoctrue

&9

2. Package Options

and
X
\glstocfalse
You can test whether or not this option is set using:
X
\ifglstoc (rue)\else (false)\fi initial: \1ffalse

The default value is t oc=fa 1 se for the base glossaries package and t oc=t rue for glossaries
—extra. This option has no effect if numberedsect ion has been used to switch to a num-
bered (unstarred) sectioning command.

(@]

= |
This option simply governs whether or not \glossarysection shoulduse \add-

contentsline after the applicable starred section command. The document class

you are using may have its own behaviour for starred sections, such as adding the title to
the PDF bookmarks.

o)
el
numberline=(boolean) default: true; initial: false

When used with t oc=t rue option, this will add \numberline{} in the final argument
of \addcontentsline. This will align the table of contents entry with the numbered
section titles. Note that this option has no effect with toc=false. If toc=true is used
without number1ine, the glossary title will be aligned with the section numbers rather than
the section titles.

=
section=(name) default: section

This option indicates the sectional unit to use for the glossary. The value (name) should be
the control sequence name without the leading backslash or following star (for example, just
chapter not \chapter or chapter*).

The default behaviour is for the glossary heading to use \ chapter, if that command exists,
or \section otherwise. The starred or unstarred form is determined by the numbered-
section option.

Example:

\usepackage [section=subsection] {glossaries}

You can omit the value if you want to use \ section:

90

2. Package Options

[\usepackage[section] {glossaries}

is equivalent to

&

\usepackage [section=section] {glossaries}

You can change this value later in the document using

\setglossarysection{ (name)}

where (name) is the sectional unit.
The start of each glossary adds information to the page header via \glsglossarymark
(see §8.2).

ucmark=(boolean) default: true; initial: varies

If ucmark=true, this will make \glsglossarymark use all caps in the header, oth-
erwise no case change will be applied. The default is ucmark=false, unless memoir has
been loaded, in which case the default is ucmark=t rue.

You can test if this option has been set using:

X

\ifglsucmark (frue)\else (falsey)\fi initial: varies

For example:

\renewcommand{\glsglossarymark} [1]{%
\ifglsucmark
\markright {\glsuppercase{#1}}%
\else
\markright {#1}%
\fi}

—

--—
—a

Sa—
numberedsection=(value) default: nolabel,; initial: false

The glossaries are placed in unnumbered sectional units by default, but this can be changed using
numberedsection. This option can take one of the following values:

91

2. Package Options

[&
|
numberedsection=false

No number, that is, use the starred form of sectioning command (for example, \chapter*

or \section¥).
[&

| S

numberedsection=nolabel

Use a numbered section, that is, the unstarred form of sectioning command (for example, \chapter
or \ section), but no label is automatically added.
S

| S

numberedsection=autolabel

Use numbered sections with automatic labelling. Each glossary uses the unstarred form of a
sectioning command (for example, \chapter or \section) and is assigned a label (via
\label). The label is formed from the glossary’s label prefixed with:

X

\glsautoprefix

The default value of \glsautoprefixisempty. For example, if you load glossaries using:

Ei

\usepackage [section, numberedsection=autolabel]
{glossaries}

then each glossary will appear in a numbered section, and can be referenced using something
like:

=

The main glossary 1s in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main glossary or a separate list of
acronyms, you can use \acronymtype which is set to main if the acronym option is
not used and is set to acronym if the acronym option is used. For example:

Ei

The list of acronyms is in section~\ref{\acronym-
type}.

You can redefine the prefix if the default label clashes with another label in your document. For
example:

92

2. Package Options

\renewcommand*{\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can then, for example, refer to the
list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

g

numberedsection=nameref

This setting is like numberedsect ion=autolabel butuses an unnumbered sectioning
command (for example, \chapter* or \section*). It'’s designed for use with the name-
ref package. For example:

=

\usepackage{nameref}
\usepackage [numberedsection=nameref] {glossaries}

Alternatively, since nameref is automatically loaded by hyperref:

\usepackage{hyperref}
\usepackage [numberedsection=nameref] {glossaries}

Now \nameref {main} will display the (table of contents) section title associated with the
main glossary. As above, you can redefine \glsautoprefix to provide a prefix for the
label.

93

2. Package Options

2.3. Glossary Appearance Options
[

=
savenumberlist=(boolean) default: true; initial: false

Options 2 and 3 only

This is a boolean option that specifies whether or not to gather and store the number list for
each entry. The defaultis savenumberlist=false with Options 2 and 3. (See \gls-
entrynumberlistand \glsdisplaynumberlist in§5.2.) Thissettingis always
true if you use Option 1 as a by-product of the way that indexing method works.

[bibzgls
If you use the record option (with either no value or record=only or record

=nameref) then this package option has no effect. With bib2gls, the number

lists are automatically saved with the default save—locations=true and save

—loclist=true resource settings.

J

[©
——
entrycounter=(boolean) default: true; initial: £alse
If set, this will create the counter:
[No
| S

glossaryentry

Each top level (level 0) entry will increment and display that counter at the start of the entry
line when using glossary styles that support this setting. Note that if you also use subent ry-
counter the option order makes a difference. If ent rycounter is specified first, the
sub-entry counter will be dependent on the glossaryentry counter.

If you use this option (and are using a glossary style that supports this option) then you can
reference the entry number within the document using:

X

\glsrefentry{(label)}

where (label) is the label associated with that glossary entry. This will use \ref if either
entrycounter=trueor subentrycounter=true, with the label (prefix)(label),
where (label) is the entry’s label and (prefix) is given by:

X

\GlsEntryCounterLabelPrefix initial: glsentry—

Ifbothentrycounter=falseand subentrycounter=false, \gls{(label)}
will be used instead.

94

2. Package Options

[i
=
If youuse \glsrefentry, you must run IS[EX twice after creating the indexing files

usingmakeglossaries,makeindex or xindy (or after creating the gl st ex
file with bib2g1ls) to ensure the cross-references are up-to-date. This is because the
counter can’t be incremented and labelled until the glossary is typeset.

The glossaryentry counter can be reset back to zero with:

\glsresetentrycounter

This does nothing if ent rycounter=false. The glossaryentry counter can be simulta-
neously incremented and labelled (using \refstepcounter and \ 1abel) with:

X

\glsstepentry{ (label)}

This command is within the definition of \glsent ryitem, whichis typically used in glossary
styles at the start of top level (level 0) entries. The argument is the entry label.
The value of the glossaryentry counter can be displayed with:

\theglossaryentry

This command is defined when the glossaryentry counter is defined, so won’t be available other-
wise. The formatted value is more usually displayed with:

X

\glsentrycounterlabel

This willdo \theglossaryentry.\space if entrycounter=true, otherwise
does nothing. This is therefore more generally useful in glossary styles as it will silently do nothing
if the setting isn’t on. This command is used within the definition of \glsentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

I
\ifglsentrycounter (rrue)\else (false)\fi nitial: \1ffalse
You can later switch it off using:
X
\glsentrycounterfalse
and switch it back on with:
X
\glsentrycountertrue

95

2. Package Options

but note that this won’t define glossaryentry if ent rycounter=t rue wasn’t used initially.
You can also locally enable or disable this option for a specific glossary using the ent ry-
counter \print(...)glossary option.

=
counterwithin=(parent-counter)

If used, this option will automatically set ent rycountertrue and the glossaryentry counter
will be reset every time (parent-counter) is incremented. An empty value indicates that glossary-
entry has no parent counter (but glossaryentry will still be defined).

=
The glossaryentry counter isn’t automatically reset at the start of each glossary, except

when glossary section numbering is on and the counter used by counterwithin is
the same as the counter used in the glossary’s sectioning command.

If you want the counter reset at the start of each glossary, you can modify the glossary preamble
(\glossarypreamble)touse \glsresetentrycounter. For example:

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

_ B

or if you are using \setglossarypreamble, add it to each glossary preamble, as re-
quired. For example:

&

\setglossarypreamble [acronym] {%
\glsresetentrycounter
The preamble text here for the list of acronyms.
}
\setglossarypreamble{%
\glsresetentrycounter
The preamble text here for the main glossary.

}

4

subentrycounter=(boolean) default: true; initial: false

If set, each level 1 glossary entry will be numbered at the start of its entry line when using glossary

96

2. Package Options

styles that support this option. This option creates the counter

lNo

—

glossarysubentry

If the entrycounter option is used before subentrycounter, then glossarysub-
entry will be added to the reset list for glossaryentry. If subent rycounter is used without
ent rycounter then the glossarysubentry counter will be reset by \glsentryitem. If
subentrycounter isused before ent rycounter then the two counters are indepen-
dent.

(@]

| Ul
There’s no support for deeper hierarchical levels. Some styles, such as those that don’t

support any hierarchy, may not support this setting or, for those that only support level 0
and level 1, may use this setting for all child entries.

J

As with the ent rycounter option, you can reference the number within the document
using \glsrefentry. There are analogous commands to those for ent rycounter.
The glossarysubentry counter can be reset back to zero with:

X

\glsresetsubentrycounter

This does nothing if subentrycounter=false. This command is used within the def-
inition of \glsentryitemif entrycounter=false.

The glossarysubentry counter can be simultaneously incremented and labelled (using \ re f-
stepcounter and \ 1abel) with:

X

\glsstepsubentry{(label)}

This command is used in \glssubentryitemif subentrycounter=true, oth-
erwise it does nothing. The argument is the entry label and is passed to \ 1abel is as for
\glsrefentry.

The value of the glossarysubentry counter can be displayed with:

\theglossarysubentry

This command is defined when the glossarysubentry counter is defined, so won’t be available
otherwise. The formatted value is more usually displayed with:

X

\glssubentrycounterlabel

97

2. Package Options

This willdo \theglossarysubentry) \space if subentrycounter=true,
otherwise does nothing. This is therefore more generally useful in glossary styles as it will silently
do nothing if the setting isn’t on. This command is used in \glssubentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

X

\ifglssubentrycounter (frue)\else (false)\fi initial: \1ffalse

You can later switch it off using:

\glssubentrycounterfalse

and switch it back on with:

\glssubentrycountertrue

but note that this won’t define glossarysubentry if subentrycounter=true wasn’t used
initially. You can also locally enable or disable this option for a specific glossary using the sub-
entrycounter \print(..)glossary option.

=
style=(style-name) initial: varies

This option sets the default glossary style to (style-name). This is initialised to sty 1e=list

unless classicthesis has been loaded, in which case the default is st y1e=index. (The styles

that use the description environment, such as the list style, are incompatible with classicthesis.)
This setting may only be used for styles that are defined when the glossaries package is loaded.

This will usually be the styles in the packages glossary—list, glossary—long, glossary—super or

glossary—tree, unless they have been suppressed through options such as nostyles. Style

packages can also be loaded by the st v 1emods option provided by glossaries—extra.
Alternatively, you can set the style later using:

I
\setglossarystyle{ (style-name)}
oruse the style \print(...)glossary option. (See §13 for further details.)
[=
=
style—options={(options)}

The newer predefined glossary styles, such as tree* and mcoltree*, can be adjusted using (key)
=(value) options. This is different from the older styles that are mostly modified by redefining
commands provided with the style. The st yle-options value should be a (key)=(value)
list where each key is the style name. Unsupported styles will trigger an error. For example:

98

2. Package Options

\setupglossaries{
style—-options={
tree*={
group-headings,
pre—-location=\dotfill
tr
mcoltree*={
balance,
columns={3}

}

See §13.1.7.1 for the t ree* options and §13.1.8 for the mcolt ree* options.

(i

The style options will only be available once the applicable style package has been loaded.

| =
| S——

nolong

This prevents the glossaries package from automatically loading glossary—long (which means
that the longtable package also won’t be loaded). This reduces overhead by not defining unwanted
styles and commands. Note that if you use this option, you won’t be able to use any of the glossary
styles defined in the glossary—long package (unless you explicitly load glossary—long).

(@]

=
Some style packages implicitly load glossary—long, so this package may still end up being

loaded even if you use nolong.

I —

|

nosuper

This prevents the glossaries package from automatically loading glossary—super (which means
that the supertabular package also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this option, you won’t be able to use any
of the glossary styles defined in the glossary—super package (unless you explicitly load glossary
—super).

99

2. Package Options

(o]

=
This option is automatically implemented if xtab has been loaded as it’s incompatible with

supertabular. This option is also automatically implemented if supertabular isn’t installed.

I —

nolist

This prevents the glossaries package from automatically loading glossary—list. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary—list package (unless you explicitly load
glossary—list). Note that since the default style is list (unless classicthesis has been loaded), you
will also need to use the sty 1 e option to set the style to something else. =

| S

[notree

This prevents the glossaries package from automatically loading glossary—tree. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary—tree package (unless you explicitly load
glossary—tree). Note that if classicthesis has been loaded, the default style is index, which is
provided by glossary—tree.

(@]

=
Some style packages implicitly load glossary—tree, so this package may still end up being

loaded even if you use notree.

I —

1 —

nostyles

This prevents all the predefined styles from being loaded. If you use this option, you need to
load a glossary style package (such as glossary—mcols). Also if you use this option, you can’t use
the sty 1e package option (unless you use sty 1emods with glossaries—extra). Instead you
must either use \setglossarystyleorthe style \print(...\glossary option.
Example:

=

\usepackage [nostyles] {glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

Alternatively:

100

2. Package Options

&

\usepackage[nostyles, stylemods=mcols, style=mcoltree]
{glossaries—extra}

=
| S——

nonumberlist

This option will suppress the associated number lists in the glossaries (see also §12). This op-
tion can also be locally switched on or off for a specific glossary with the nonumberlist
\print{...)\glossary options.

a

Note that if you use Options 2 or 3 (makelndex or xindy) then the locations must
still be valid even if this setting is on. This package option merely prevents the number
list from being displayed, but both makeindex and xindy still require a location or
cross-reference for each term that’s indexed.

Remember that number list includes any cross-references, so suppressing the number list will
also hide the cross-references (in which case, you may want to use seeautonumberlist).

[bib2gls
With bib2gls, it’s more efficient to use save—locations=false in the re-
source options if no locations are required.

| —

seeautonumberlist

If you suppress the number lists with nonumber 11 st, described above, this will also suppress
any cross-referencing information supplied by the see key in \newglossaryentry or
\glssee. Ifyouuse seeautonumberlist, the see key will automatically implement
nonumberlist=false for that entry. (Note this doesn’t affect \gl ssee.) For further
details see §11.

=
counter=(counter-name) initial: page

This setting indicates that (counter-name) should be the default counter to use in the number lists
(see §12). This option can be overridden for a specific glossary by the (counter) optional argu-
ment of \newglossary orthe counter key when defining an entry or by the counter
option when referencing an entry.

This option will redefine:

X

—

\glscounter initial: page

101

2. Package Options

to (counter-name).
(©
nopostdot=(boolean) default: t rue; initial: true

If true, this option suppresses the default terminating full stop in glossary styles that use the
post-description hook \glspostdescription.

The default settingis nopost dot=false for the base glossaries package and nopostdot
=t rue for glossaries—extra.

[glossaries—extra

The glossaries—extra package provides po st dot, whichis equivalent to nopostdot
=false, and also postpunc, which allows you to choose a different punctuation
character.

[O®
Sl
nogroupskip=(boolean) default: true; initial: £alse

If true, this option suppresses the default vertical gap between letter groups used by some of
the predefined glossary styles. This option can also be locally switched on or off for a specific
glossary with the nogroupskip \print(...)glossary options.

This option is only relevant for glossary styles that use the conditional:

X
\ifglsnogroupskip (true)\else (false)\fi initial: \1ffalse

to test for this setting.

[bib2 gls]
If you are using bib2gls without the ——group (or —g) switch then this option is
irrelevant as there won’t be any letter groups.

7

-—
—a

Sa—
stylemods={list) default: default

Loads the glossaries—extra—stylemods package, which patches the predefined glossary styles.
The (list) argument is optional. If present, this will also load glossary-(element).sty for each
(element) in the comma-separated (list). See the glossaries—extra manual for further details.

102

2. Package Options

2.4. Indexing Options

seenoindex=(value) initial: exror

(This option is only relevant with makeindex and xindy.) The see key automatically
indexes the cross-referenced entry using \glssee. This means that if this key is used in an
entry definition before the relevant indexing file has been opened, the indexing can’t be per-
formed. Since this is easy to miss, the glossaries package by default issues an error message if
the see key is used before \makeglossaries.

This option may take one of the following values:

]

seenoindex=error

This is the default setting that issues an error message.

<]

seenoindex=warn

This setting will trigger a warning rather than an error.

3

seenoindex=ignore

This setting will do nothing.

For example, if you want to temporarily comment out \makeglossaries to speed up
the compilation of a draft document by omitting the indexing, you can use seenoindex=
warn or seenoindex=ignore.

g

esclocations=(boolean) default: true; initial: false

Only applicable to makeindex and xindy. As from v4.50, the initial setting is now
esclocations=false. Previously it was esclocations=true.

Both makeindex and xindy are fussy about the location syntax (makeindex more
so than x1ndy) so, if esclocations=true, the glossaries package will try to ensure
that special characters are escaped, which allows for the location to be substituted for a format
that’s more acceptable to the indexing application. This requires a bit of trickery to circumvent
the problem posed by TgX’s asynchronous output routine, which can go wrong and also adds to
the complexity of the document build.

If you’re sure that your locations will always expand to an acceptable format (or you’re prepared
to post-process the glossary file before passing it to the relevant indexing application) then use
esclocations=false toavoid the complex escaping of location values. This is now the
default.

If, however, your locations (for example, \thepage with the default count e r=page)

103

2. Package Options

expand to a robust command then you may need to use esclocations=true. You may
additionally need to set the following conditional to true:

X

\ifglswrallowprimitivemods (true)\else (false)\fi
nitial: \1ffalse

which will locally redefine some primitives in order to escape special characters without prema-
turely expanding \thepage. Since this hack may cause some issues and isn’t necessary for
the majority of documents, this is off by default.

This conditional can be switched on with:

\glswrallowprimitivemodstrue

but remember that it will have no effect with esclocations=false. If can be switched
off with:

X

\glswrallowprimitivemodsfalse

If you are using mak e 1 nde x and your location expands to content in the form (cs) { (num) }
, where (cs) is a command (optionally preceded by \protect)and (num) is a location accept-
able to makeindex, then you can use makeglossaries to make a suitable adjustment
without esclocations=true. See §12.5 for furthe details.
This isn’t an issue for Options 1 or 4 as the locations are written to the aux file and both
methods use ITEX syntax, so no conversion is required.
[©

=
indexonlyfirst=(boolean) default: true; initial: false

If true, this setting will only index on first use. The default setting indexonlyfirst=
false, will index the entry every time one of the \ g1 s-like or \ gl stext-like commands
are used. Note that \ gl sadd will always add information to the external glossary file (since
that’s the purpose of that command).

You can test if this setting is on using the conditional:

X
\ifglsindexonlyfirst (frue)\else (false)\fi nitial: \1ffalse

This setting can also be switched on with:

\glsindexonlyfirsttrue

and off with:

104

2. Package Options

\glsindexonlyfirstfalse

[i
=
Resetting the first use flag with commands like \glsreset after an entry has been
indexed will cause that entry to be indexed multiple times if it’s used again after the reset.

Likewise unsetting the first use flag before an entry has been indexed will prevent it from
being indexed (unless specifically indexed with \glsadd).

You can customise the default behaviour by redefining

\glswriteentry{(label)} { (indexing code) }

where (label) is the entry’s label and (indexing code) is the code that writes the entry’s information
to the external file. The default definition of \glswriteentry is:

\newcommand*{\glswriteentry}[2]{%
\ifglsindexonlyfirst
\ifglsused{#1}{}{#2}%
\else
#25%
\fi
}
This does (indexing code) unless indexonlyfirst=true and the entry identified by
(label) has been marked as used
For example, suppose you only want to index the first use for entries in the a c ronym glossary
and not in the ma in (or any other) glossary:

,

\renewcommand*{\glswriteentry} [2]{%
\ifthenelse\equal{\glsentrytype{#1l}}{acronym}
{\ifglsused{#1}{}{#2}}%

{#2}%

}

.

Here I've used \ 1 fthenel se to ensure the arguments of \equal are fully expanded before
the comparison is made. There are other methods of performing an expanded string comparison,
which you may prefer to use.

With the glossaries—extra package it’s possible to only index first use for particular categories.
For example, if you only want this enabled for abbreviations then you can set the i ndexonly-

105

2. Package Options

f£1rst attribute for the abbreviation and, if appropriate, acronym categories. (Instead of using
the indexonlyfirst package option.) See the glossaries—extra manual for further details.

[©
(=
indexcrossrefs=(boolean) default: t rue; initial: true

This option is only available with glossaries—extra. If true, this will automatically index
(\glsadd) any cross-referenced entries that haven’t been marked as used at the end of the
document. Note that this increases the document build time. See glossaries—extra manual for
further details.

, bib2gls ‘

Note that bib2gls can automatically find dependent entries when it parses the bib
file. Use the se lect ion option to determine the selection of dependencies.

[©
=
autoseeindex=(boolean) default: true; initial: true

This option is only available with glossaries—extra. The base glossaries package always im-
plements aut oseeindex=true.

If true, this makes the see and seeal so keys automatically index the entry (with \gls-
see) when the entry is defined. This means that any entry with the see (or seealso) key
will automatically be added to the glossary. See the glossaries—extra manual for further details.

[bib2gls |

With bib2gls, use the se lect ion resource option to determine the selection of
dependencies.

\.

-—
—

=
record=(value) default: only:; initial: of £

This option is only available with glossaries—extra. See glossaries—extra manual for further
details. A brief summary of available values:
S
(A

record=off

This default setting indicates that bib2gls isn’t being used.

3

record=only

This setting indicates that bib2gls is being used to fetch entries from one or more biDb files,
to sort the entries and collate the number lists, where the location information is the same as for
Options 1, 2 and 3.

106

2. Package Options

B

|
record=nameref

This setting 1s like record=only but provides extra information that allows the associated
title to be used instead of the location number and provides better support for hyperlinked loca-

tions.
S

| A

record=hybrid

This setting indicates a hybrid approach where bib2gls is used to fetch entries from one or
more bib files but makeindex or xindy are used for the indexing. This requires a more
complicated document build and isn’t recommended.

[®

=
equations=(boolean) default: true; initial: false

This option is only available with glossaries—extra. If true, this option will cause the default
location counter to automatically switch to equation when inside a numbered equation environ-

ment.
(@
floats=(boolean) default: true; initial: false

This option is only available with glossaries—extra. If true, this option will cause the de-
fault location counter to automatically switch to the corresponding counter when inside a float.
(Remember that with floats it’s the \capt ion command that increments the counter so the
location will be incorrect if an entry is indexed within the float before the caption.) —=

|

indexcounter

This option is only available with glossaries—extra. This valueless option is primarily intended
for use with b1b2gls and hyperref allowing the page location hyperlink target to be set to the
relevant point within the page (rather than the top of the page). Unexpected results will occur
with other indexing methods. See glossaries—extra manual for further details.

2.5. Sorting Options

This section is mostly for Options 2 and 3. Only the sort and order options are applicable
for Option 1.

[glossaries—extra]

With Options 4, 5 and 6, only sort=none is applicable (and this is automatically im-
plemented by record=onlyand record=nameref). Withbib2gls, the sort
method is provided in the optional argument of \G1 sXt rLLoadResources not with

107

2. Package Options

the sort package option. There’s no sorting with Options 5 and 6.

sanitizesort=(boolean) default: true; initial: varies

This option determines whether or not to sanitize the sort value when writing to the external
indexing file. For example, suppose you define an entry as follows:

Ei

\newglossaryentry{hash}{name={\#}, sort={},
description={hash symbol}}

The sort value () must be sanitized before writing it to the indexing file, otherwise IKTgX will try
to interpret it as a parameter reference. If, on the other hand, you want the sort value expanded,
you need to switch off the sanitization. For example, suppose you do:

\newcommand{ \mysortvalue} {AAA}

\newglossaryentry{sample}{%
name={sample},
sort={\mysortvalue},
description={an example}}

and you actually want \mysortvalue expanded, so that the entry is sorted according to
AAA, then use the package option sanitizesortfalse.

The default for Options 2 and 3 is sanitizesort=true, and the default for Option 1
iIssanitizesort=false.

--—
—

o=
preprocess—sort=(boolean) default: true

This option is designed for use with Option 1. Regardless of the value, this option will switch
off sanitization of the sort value but will also inhibit the initial field expansion for sort (unlike
sanitizesort=false).

The next part only affects Option 1 with sort=standard: If true, the sort value will be
processed using the datatool—base sort preprocessing function when the entry is defined (default).
If false, the sort value won’t be processed until just before the list is sorted. The preprocessing
function requires datatool v3.0+ (ideally v3.2+).

o

If you switch off preprocessing before the entries are defined and then switch it on af-
ter they have been defined, the value won’t be expanded when the localisation support
is implemented (for word or letter sort). This may prevent the localisation support from

108

2. Package Options

working correctly.

--—
—a

=
sort=(value) initial: standard

If you use Options 2 or 3, this package option is the only way of specifying how to sort the
glossaries. Only Option 1 allows you to specify sort methods for individual glossaries via the
sort key in the optional argument of \printnoidxglossary. If you have multiple
glossaries in your document and you are using Option 1, only use the package options sort=
def or sort=use if you want to set this sort method for all your glossaries.
(&]
(A

sort=none

This setting is only for documents that don’t use \makeglossaries (Options 2 or 3) or
\makenoidxglossaries (Option 1). It omits the code used to sanitize or escape the
sort value, since it’s not required. This can help to improve the document build speed, especially
if there are a large number of entries. This setting may be used if no glossary is required or
if \printunsrtglossary is used (Option 5). If you want an unsorted glossary with
bib2gls, use the resource option sort=none instead. This option will redefine \g1ls-
indexingsettingtonone.

[©
=
This option will still assign the sort key to its default value. It simply doesn’t process it.
If you want the sort key set to an empty value instead, use sort=clear instead.

(>

sort=clear

As sort=none but sets the sort key to an empty value. This will affect letter group for-
mations in \printunsrtglossary with Option 5. See the glossaries—extra manual for
further details. This option will redefine \glsindexingsettingtonone. The remain-
ing sort options listed below don’t change \glsindexingsetting.

al
sort=def

Entries are sorted in the order in which they were defined. With Option 1, this is implemented by
simply iterating over all defined entries so there’s no actual sorting. With Options 2 and 3, sorting
is always performed (since that’s the purpose of makeindex and xindy). This means that to
obtain a list in order of definition, the sort key is assigned a numeric value that’s incremented
whenever a new entry is defined.

109

2. Package Options

B

|
sort=use

Entries are sorted according to the order in which they are used in the document. With Option 1,
this order is obtained by iterating over a list that’s formed with the aux file is input at the start
of the document. With Options 2 and 3, again the sort key is assigned a numeric value, but
in this case the value is incremented, and the sort key is assigned, the first time an entry is
indexed.

Both sort=def and sort=use zero-pad the sort key to a six digit number using:

\glssortnumberfmt { (number) }

This can be redefined, if required, before the entries are defined (in the case of sort=def) or
before the entries are used (in the case of sort=use).
Note that the group styles (such as listgroup) are incompatible with the sort=use and

sort=def options.
S

|

sort=standard

Entries are sorted according to the value of the sort key used in \newglossaryentry
(if present) or the name key (if sort key is missing).
When the standard sort option is in use, you can hook into the sort mechanism by redefining:

I

\glsprestandardsort{(sortcs)} { (type) } { (entry-label) }

where (sort cs) is a temporary control sequence that stores the sort value (which was either ex-
plicitly set via the sort key or implicitly set via the name key) before any escaping of the
makeindex/xindy special characters is performed. By default \gl sprestandard-
sort just does:

X

\glsdosanitizesort

which sanitizes (sort cs) if sanitizesort=true (ordoesnothingif sanitizesort
=false).

The other arguments, (type) and (entry-label), are the glossary type and the entry label for the
current entry. Note that (type) will always be a control sequence, but (label) will be in the form
used in the first argument of \newglossaryentry.

Redefining \glsprestandardsort won't affect any entries that have already been
defined and will have no effect at all if you use another sort setting.

110

2. Package Options

Example 11: Mixing Alphabetical and Order of Definition Sorting

Suppose I have three glossaries: main, acronym and notation, and let’s suppose I
want the main and acronym glossaries to be sorted alphabetically, but the notation
type should be sorted in order of definition.

For Option 1, the sort option can be used in \printnoidxglossary:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym, sort=word]
\printnoidxglossary[type=notation, sort=def]

For Options 2 or 3, [can set sort =standard (which is the default), and I can either define
all my ma in and acronym entries, then redefine \glsprestandardsort toset (sort
cs) to an incremented integer, and then define all my not at ion entries. Alternatively, I can
redefine \glsprestandardsort to check for the glossary type and only modify (sort cs)
if (type) is notation.

The first method can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]1{%
\stepcounter{sortcount}%
\edef#l{\glssortnumberfmt{\arabic{sortcount}}}%

}

The second method can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]14{%
\ifdefstring{#2}{notation}%
{%
\stepcounter{sortcount}%
\edef#l1{\glssortnumberfmt{\arabic{sortcount}}}

o\°
o\°

o\°

A

\glsdosanitizesort

—~
o\°

111

2. Package Options

(\1fdefstringisdefined by the etoolbox package, which is automatically loaded by glossaries.)
For a complete document, see the sample file sampleSort.tex.

Example 12: Customizing Standard Sort (Options 2 or 3)

Suppose you want a glossary of people and you want the names listed as (first-name) (surname)
in the glossary, but you want the names sorted by (surname), (first-name). You can do this by
defining a command called, say, \ name {first-name } {surname} that you can use in the name
key when you define the entry, but hook into the standard sort mechanism to temporarily redefine
\name while the sort value is being set.

First, define two commands to set the person’s name:

\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2] {#1 #2}

and \name needs to be initialised to \textname:

8 LB

[\let\name\textname

Now redefine \glsprestandardsort sothatittemporarily sets \name to \ sortname
and expands the sort value, then sets \name to \ t ext name so that the person’s name appears
as (first-name) (surname) in the text:

&

\renewcommand{\glsprestandardsort}[3]1{%
\let\name\sortname
\edef#l{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

}

(The somewhat complicate use of \expandafter etc helps to protect fragile commands,
but care is still needed.)
Now the entries can be defined:

=

\newglossaryentry{joebloggs}name={\name{Joe}{Bloggs}
o

description={some information about Joe Bloggs}

112

2. Package Options

\newglossaryentry{johnsmith}{name={\name{John}
{Smith}},
description={some information about John Smith}}

For a complete document, see the sample file samplePeople.tex

order

This may take two values:

order=word

Word order (“sea lion” before “seal”).

order=letter

Letter order (“seal” before “sea lion”).

Note that with Options 2 and 3, the order option has no effect if you explicitly call
makeindex or xindy.

If you use Option 1, this setting will be used if you use sort=standard in the optional
argument of \printnoidxglossary:

=

\printnoidxglossary[sort=standard]

Alternatively, you can specify the order for individual glossaries:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym, sort=letter]

bib2gls

With bib2gls, use the break—at option in \GlsXtrLoadResources in-
stead of order.

113

2. Package Options

I —

|

makeindex
Option 2

The glossary information and indexing style file will be written in make index format. If you
use makeglossaries ormakeglossaries—11ite, it will automatically detect that
it needs to callmakeindex. If you don’t use makeglossaries, you need to remember
to use makeindex not xindy. The indexing style file will been given a 1 st extension.
You may omit this package option if you are using Option 2 as this is the default. It’s available
in case you need to override the effect of an earlier occurrence of xindy in the package option

list.
(==

==

xindy={ (options) }
Option 3

The glossary information and indexing style file will be written in xindy format. If you use
makeglossaries, it will automatically detect that it needs to call xindy. If you don’t
use makeglossaries, you need to remember to use xindy not makeindex. The
indexing style file will been given a xdy extension.

This package option may additionally have a value that is a (key)=(value) comma-separated
list to override some default options. Note that these options are irrelevant if you explicitly call
xindy. See §14 for further details on using xindy with the glossaries package.

You can test if this option has been set using the conditional:

I
\ifglsxindy (rrue)\else (false)\fi initial: \1ffalse

Note that this conditional should not be changed after \makeglossaries otherwise the
syntax in the glossary files will be incorrect. If this conditional is false, it means that any option
other than Option 3 is in effect. (If you need to know which indexing option is in effect, check
the definition of \glsindexingsetting instead.)

The (options) value may be omitted. If set, it should be a (key)=(value) list, where the fol-
lowing three options may be used:

==

language={ (value)}

The language module to use, which is passed to xindy with the —L switch. The default is
obtained from \ languagename but note that this may not be correct as xindy has a
different labelling system to babel and polyglossia.

The makeglossaries script has a set of mappings of known babel language names to
x1indy language names, but new babel dialect names may not be included. The makeglos-
saries—1lite script doesn’t have this feature (but there’s no benefit in use makeglos-
saries—lite instead of makeglossaries when using xindy). The automake
=option that calls xindy explicitly also doesn’t use any mapping.

114

2. Package Options

However, even if the appropriate mapping is available, \ languagename may still not
expand to the language required for the glossary. In which case, you need to specify the correct
xindy language. For example:

=

\usepackage [brazilian,english] {babel}
\usepackage [xindy=language=portuguese] {glossaries}

If you have multiple glossaries in different languages, use \G1lsSetXdyLanguage to set
the language for each glossary.

codepage={ (value) }

The codepage is the file encoding for the xindy files and is passed to xindy with the —C
switch. The default codepage is obtained from \ inputencodingname. As from v4.50,
if \inputencodingname isn’t defined, UTF-8 is assumed (which is identified by the la-
bel ut £8). If this is incorrect, you will need to use the codepage option but make sure
you use the xindy codepage label (for example, cp1252 or 1atin9). See the xindy
documentation for further details.

(i]
=
The codepage may not simply be the encoding but may include a sorting rule, such as

ij-—as-y-utf8ordin5007-ut£8. See §14.2.

For example:

,

\usepackage [xindy=language=english, codepage=cpl252]
{glossaries}

—

-—
—

el
glsnumbers={ (boolean) } default: true; initial: true

If true, this option will define the number group in the xindy style file, which by default will
be placed before the “A” letter group. If you don’t want this letter group, set this option to false.
Note that the “A” letter group is only available with Latin alphabets, so if you are using a non-
Latin alphabet, you will either need to switch off the number group or identify the letter group
that it should come before with \G1sSetXdyNumberGroupOrder. =

| S

xindygloss
Option 3

This is equivalent to x1ndy without any value supplied and may be used as a document class

115

2. Package Options

option. The language and code page can be set via \GlsSetXdyLanguage and \G1ls-
SetXdyCodePage if the defaults are inappropriate (see §14.2.)
I —_—

|

xindynoglsnumbers
Option 3

This is equivalent to xindy={glsnumbers=false} and may be used as a document
class option.

=
automake=(value) default: immediate; initial: false

This option will attempt to use the shell escape to run the appropriate indexing application. You
will still need to run ITEX twice. For example, if the document in the file myDoc . tex con-
tains:

,

\usepackage [automake] {glossaries}

\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{an example}}

\begin{document}

\gls{sample}

\printglossaries

\end{document}

Then the document build is now:

pdflatex myDoc
pdflatex myDoc

This will run makeindex on every ISIEX run. If you have a large glossary with a complex
document build, this can end up being more time-consuming that simply running makeindex
(either explicitly or via makeglossaries) the minimum number of required times.

[i
|
Note that you will need to have the shell escape enabled (restricted mode for a direct call

tomakeindex and unrestricted mode for xindy, makeglossariesormake—
glossaries—1ite). If you switch this option on and you are using Lual4TEX, then
the shellesc package will be loaded.

If this option doesn’t seem to work, open the 1og file in your text editor and search for
“runsystem?”. For example, if the document is in a file called myDoc . tex and it has:

116

2. Package Options

B

[\usepackage [automake] {glossaries}

and you run KKTEX in restricted mode, then if call was successful, you should find the following
line in the file myDoc. 1og:

runsystem (makeindex -s myDoc.ist -t myDoc.glg -o
myDoc.gls myDoc.glo) ...executed safely (allowed).

_ B

The parentheses immediately after “ runsystem” show how the command was called. The
bit after the three dots . . . indicates whether or not the command was run and, if so, whether
it was successful. In the above case, it has “executed safely (allowed)”. This means that it was
allowed to run in restricted mode because makeindex is on the list of trusted applications.

If you change the package option to:

[\usepackage [automake=makegloss] {glossaries}

and rerun I£TEX in restricted mode, then the line in myDoc . 1 og will now be:

runsystem (makeglossaries myDoc) ...disabled
(restricted).

BB

This indicates that an attempt was made to run makeglossaries (rather than a direct call
to makeilndex), which isn’t permitted in restricted mode. There will be a similar message
with aut omake=11ite orif the xindy option is used. These cases require the unrestricted
shell escape.

[i
=
Think carefully before enabling unrestricted mode. Do you trust all the packages your

document is loading (either explicitly or implicitly via another package)? Do you trust
any code that you have copied and pasted from some third party? First compile your
document in restricted mode (or with the shell escape disabled) and search the 1 og file
for “runsystem?” to find out exactly what system calls are being attempted.

If the document is compiled in unrestricted mode, the corresponding line in the 1og file
should now be:

runsystem (makeglossaries myDoc) ...executed. \

This means that makeglossaries was run. If it has “failed” instead of “executed”, then it
means there was a fatal error. Note that just because the 1 og file has “executed” doesn’t mean

117

2. Package Options

that the application ran without a problem as there may have been some warnings or non-fatal
errors. If you get any unexpected results, check the indexing application’s transcript file (for
example, the gl g file, myDoc . glg in the above, for the ma in glossary).

automake=false

No attempt is made to use the shell escape.

automake=true alias: delayed

This is now a deprecated synonym for aut omake=delayed. This used to be the default
if the value to aut omake wasn’t supplied, but the default switched to the less problematic
automake=1immediate in version 4.50.

(&]

| A

automake=delayed

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will
be made at the end of the document using a delayed write to ensure that the glossary files are
complete. (It’s necessary to delay writing to the indexing files in order to ensure that \the-
page is correct.) Unfortunately, there are situations where the delayed write never occurs, for
example, if there are floats on the final page. In those cases, it’s better to use an immediate write

(any of the following options).
[&

| S

automake=immediate

A direct call to makeindex or x1ndy (as appropriate) for each non-empty glossary will be
made at the start of \makeglossaries using an immediate write. This ensures that the
indexing files are read by the indexing application before they are opened (which will clear their
content).

If you are using xindy, then aut omake=makegloss is a better option that this one.
Either way, you will need Perl and the unrestricted mode, but with makeglossaries you
get the benefit of the language mappings and diagnostics.

(&]

|

automake=makegloss

A call to makeglossaries will be made at the start of \makeglossaries using

an immediate write if the aux file exists. On the one hand, it’s better to use makeglos-

saries as it has some extra diagnostic functions, but on the other hand it both requires Perl

and the unrestricted shell escape. ~
L

| S

automake=lite

A call tomakeglossaries—1ite will be made at the start of \makeglossaries

118

2. Package Options

using an immediate write if the aux file exists. There’s little benefit in this option over aut oma ke
=immediate and it has the added disadvantage of requiring the unrestricted mode.

I E
=
automakegloss alias: makegloss
This valueless option is equivalent to aut omake=makegloss.
I E
=
automakeglosslite alias: 1ite
This valueless option is equivalent to aut omake=1ite.
[=
=
disablemakegloss

This valueless option indicates that \makeglossariesand \makenoidxglossaries
should be disabled. This option is provided in the event that you have to use a class or package that
disregards the advice in §1.3 and automatically performs \makeglossaries or \make-
noidxglossaries but you don’t want this. (For example, you want to use a different
indexing method or you want to disable indexing while working on a draft document.)

Naturally, if there’s a particular reason why the class or package insists on a specific indexing
method, for example, it’s an editorial requirement, then you will need to abide by that decision.

This option may be passed in the standard document class option list or passed using \Pass-
OptionsToPackage before glossaries is loaded. Note that this does nothing if \make-
glossaries or \makenoidxglossaries has already been used whilst enabled.

| —

| S

restoremakegloss

Cancels the effect of di sablemakegloss. This option may be used in \ setupglos-
saries. Itissues a warning if \makeglossaries or \makenoidxglossaries
has already been used whilst enabled. Note that this option removes the check for \nofiles,
as this option is an indication that the output files are actually required.

For example, suppose the class customclass.cls automatically loads glossaries and does \make-
glossaries butyouneed an extra glossary, which has to be defined before \makeglossaries,
then you can do:

B

\documentclass[disablemakegloss] {customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

or

119

2. Package Options

,

\PassOptionsToPackage{disablemakegloss}{glossaries}
\documentclass{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}

\makeglossaries

Note that restoring these commands doesn’t necessarily mean that they can be used. It just
means that their normal behaviour given the current settings will apply. For example, if you use
the record=only or record=nameref options with glossaries—extra then you can’t
use \makeglossaries or \makenoidxglossaries regardless of restore-
makegloss.

2.6. Glossary Type Options

nohypertypes={ (list) }

Use this option if you have multiple glossaries and you want to suppress the entry hyperlinks for
a particular glossary or glossaries. The value of this option should be a comma-separated list of
glossary types where \ g1 s etc shouldn’t have hyperlinks by default. Make sure you enclose the
value in braces if it contains any commas. Example:

=

\usepackage [acronym, nohypertypes={acronym, notation}]
{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

As illustrated above, the glossary doesn’t need to exist when you identify it in nohyper-
types.

(i

The values must be fully expanded, so don’t try, for example, nohypertypes=
\acronymtype.

You may also use:

\GlsDeclareNoHyperList {(list)}

instead or additionally. See §5.1 for further details.

120

2. Package Options

[glossaries—extra

The glossaries—extra package has the nohyper category attribute which will suppress
the hyperlink for entries with the given category, which can be used as an alternative to
suppressing the hyperlink on a per-glossary basis.

I —

|

nomain

This suppresses the creation of the ma in glossary and associated g1 o file, if unrequired. Note
that if you use this option, you must create another glossary in which to put all your entries (either
via the acronym (or acronyms) package option described in §2.7 or via the symbols,
numbers or index options described in §2.9 or via \newglossary described in §9).
Even if you don’t intend to display the glossary, a default glossary is still required.
If you don’t use the main glossary and you don’t use this option to suppress its creation,
makeglossaries will produce a warning:
L]

Warning: File '(filename).glo' 1s empty.

Have you used any entries defined in glossary
'main'?

Remember to use package option 'nomain' if
you don't want to use the main glossary.

If you did actually want to use the ma i n glossary and you see this warning, check that you have
referenced the entries in that glossary via commands such as \g1ls.
I p—i

|

symbols

This valueless option defines a new glossary type with the label symbol s via

\newglossary[slg] {symbols}{sls}{slo}{\glssymbols—
groupname }

It also defines

\printsymbols [(opftions)]

which is a synonym for

7~

\printglossary[type=symbols, (options)]

If you use Option 1, you need to use:

121

2. Package Options

\printnoidxglossary [type=symbols, (options)]

to display the list of symbols.
[i
L=
Remember to use the nomain package option if you're only interested in using this
symbo 1 s glossary and don’t intend to use the ma in glossary.

[glossaries—extra

The glossaries—extra package has a slightly modified version of this option which addi-
tionally provides \ gl sxt rnewsymbo 1 as a convenient shortcut method for defining
symbols. See the glossaries—extra manual for further details.

| —

|

numbers

This valueless option defines a new glossary type with the label numbers via

\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbers-—
groupname }

It also defines

\printnumbers [(options)]

which is a synonym for

\printglossary[type=numbers, (options)]

If you use Option 1, you need to use:

\printnoidxglossary [type=numbers, (options)]

to display the list of numbers.
[i
|

Remember to use the nomain package option if you’re only interested in using this
numbers glossary and don’t intend to use the ma in glossary.

122

2. Package Options

[glossaries—extra

The glossaries—extra package has a slightly modified version of this option which addi-
tionally provides \ g1l sxt rnewnumber as a convenient shortcut method for defining
numbers. See the glossaries—extra manual for further details.

I E
=
index
This valueless option defines a new glossary type with the label 1 ndex via
\newglossary[ilg]{index}{ind}{idx}{\indexname}
It also defines
X

\newterm [(key=value list)] { (entry-label) }

which is a synonym for

\newglossaryentry{(entry-label) } {t ype={index}, name={entry-
label},
description={\nopostdesc}, (options)}

and
X
\printindex [(options)] v4.02+
which is a synonym for
\printglossary[type=index, (options)]
If you use Option 1, you need to use:
\printnoidxglossary [type=index, (options)]
to display this glossary.
[i
=

Remember to use the nomain package option if you're only interested in using this
index glossary and don’t intend to use the ma in glossary. Note that you can’t mix this
option with \ index. FEither use glossaries for the indexing or use a custom indexing
package, such as makeidx, imakeidx. (You can, of course, load one of those packages and
load glossaries without the 1 ndex package option.)

123

2. Package Options

Since the index isn’t designed for terms with descriptions, you might also want to disable
the hyperlinks for this glossary using the package option nohypertypes=index or the
command

\GlsDeclareNoHyperList{index}

However, it can also be useful to link to the index in order to look up the term’s location list to
find other parts of the document where it might be used. For example, this manual will have a
hyperlink to the index for general terms, such as “table of contents”, or general commands, such
as \ index, that aren’t defined anywhere in the document.

The example file sample—index. tex illustrates the use of the 1 ndex package option.

| S

noglossaryindex

This valueless option switches off index if index has been passed implicitly (for example,
through global document options). This option can’t be used in \ setupglossaries.

2.7. Acronym and Abbreviation Options

o)

=
acronym=(boolean) default: true; initial: false

If true, this creates a new glossary with the label a c ronym. This is equivalent to:

\newglossary[alg] {acronym}{acr}{acn}{\acronymname }

It will also provide (if not already defined)

\printacronyms [{options)]

that’s equivalent to

\printglossary[type=acronym, {(options)]

If you are using Option 1, you need to use

\printnoidxglossary [type=acronym, (options)]

\.

to display the list of acronyms.
If the acronym package option is used, \acronymt ype is set to acronym otherwise
it is set to \glsdefaulttype (which is normally the main glossary.) Entries that are

124

2. Package Options

defined using \newacronym are placed in the glossary whose label is given by \acronym-
type, unless another glossary is explicitly specified with the t ype key.

[i
L=
Remember to use the nomain package option if you’re only interested in using this

acronym glossary. (That is, you don’t intend to use the ma in glossary.)

[glossaries—extra

The glossaries—extra extension package comes with an analogous abbreviations
option, which creates a new glossary with the label abbreviations and sets the
command \glsxtrabbrvtype to this. If the acronym option hasn’t also been
used, then \acronymtype will be set to \glsxtrabbrvtype. This enables
both \newacronymand \newabbreviation to use the same glossary.

Make sure you have at least v1.42 of glossaries—extra if you use the acronym (or
acronyms) package option with the extension package to avoid a bug that interferes
with the abbreviation style.

I —

|

acronyms

This is equivalent to acronym=t rue and may be used in the document class option list.

| —

|

abbreviations

This valueless option provided by glossaries—extra creates a new glossary type with the label
abbreviations using:

\newglossary[glg—abr] {abbreviations}{gls—-abr}{glo-
abr}{\abbreviationsname}

The label can be accessed with \ g1 sxt rabbrvt ype, which is analogous to \acronym-
type. See glossaries—extra manual for further details.

=
acronymlists={ (label-list) }

This option is used to identify the glossaries that contain acronyms so that they can have their
entry format adjusted by \setacronymstyle. (It also enables \forallacronyms
to work.)

By default, if the list is empty when \ setacronymstyle is used then it will automati-
cally add \acronymtype to the list.

If you have other lists of acronyms, you can specify them as a comma-separated list in the
value of acronymlists. For example, if you use the acronym package option but you
also want the ma i n glossary to also contain a list of acronyms, you can do:

125

2. Package Options

=

[\usepackage[acronym, acronymlists=main] {glossaries}

No check is performed to determine if the listed glossaries exist, so you can add glossaries you
haven’t defined yet. For example:

\usepackage [acronym, acronymlists={main, acronym?2 }]
{glossaries}

\newglossary[alg2]{acronym2}{acr2}{acn2}%
{Statistical Acronyms}

You can use

\DeclareAcronymList { (list) }

instead of or in addition to the acronymlists option. This will add the glossaries given
in (list) to the list of glossaries that are identified as lists of acronyms. To replace the list of
acronym lists with a new list use:

X

\SetAcronymLists{(list)}

If the list is changed after \ set acronymst yle then it will result in inconsistencies in the
formatting. If this does happen, and is for some reason unavoidable (such as \ setacronym-
style occurring in a package that loads glossaries), you will need to set the entry format to
match the style:

\DeclareAcronymLi st { (glossary-label) }
\defglsentryfmt [(glossary-label)] {\GlsUseAcrEntryDispStyle}
{ (style-name) }

You can determine if a glossary has been identified as being a list of acronyms using:

\glsIfListOfAcronyms {(glossary-label)} { (true)} { (false) }

[glossaries—extra

This option and associated commands are incompatible with glossaries—extra’s
abbreviation mechanism. Lists of abbreviations don’t need identifying.

126

2. Package Options

=
shortcuts={ (boolean) } default: false;initial: false

This option provides shortcut commands for acronyms. See §6 for further details. Alternatively
you can use:

X

\DefineAcronymSynonyms

[glossaries—extra]

The glossaries—extra package provides additional shortcuts. J

2.8. Deprecated Acronym Style Options

The package options listed in this section were deprecated in version 4.02 (2013-12-05) and have
now been removed. You will need to use rollback with them (see §1.1). These options started
generating warnings in version 4.47 (2021-09-20) and as from version 4.50 will now generate an
error unless you use rollback.

If you want to change the acronym style, use \ setacronymstyle instead. See §6 for
further details.

=y

description Deprecated

This option changed the definition of \newacronym to allow a description. This option may
be replaced by:

=

[\setacronymstyle{long-short-desc}

or (with smallcaps)

\setacronymstyle{long-sc-short-desc}

or (with smaller)

\setacronymstyle{long-sm-short-desc}

or (with footnote)

127

2. Package Options

\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)

\setacronymstyle{footnote-sc-desc}

or (with footnote and smaller)

\setacronymstyle{footnote-sm-desc}

or (with dua)

\setacronymstyle{dua—-desc}

H-E- -

ilzll

smallcaps

Deprecated

This option changed the definition of \ newacronym and the way that acronyms are displayed.

This option may be replaced by:

\setacronymstyle{long—-sc—short}

or (with description)

\setacronymstyle{long-sc-short-desc}

or (with descriptionand footnote)

\setacronymstyle{footnote-sc—-desc}

u-NN-RN-

%

smaller

Deprecated

This option changed the definition of \newacronymand the way that acronyms are displayed.

This option may be replaced by:

128

2. Package Options

\setacronymstyle{long-sm-short}

or (withdescription)

\setacronymstyle{long-sm-short-desc}

or (withdescriptionand footnote)

\setacronymstyle{footnote-sm-desc}

[N-RE-RE-

footnote Deprecated

This option changed the definition of \ newacronym and the way that acronyms are displayed.
This option may be replaced by:

\setacronymstyle{footnote}

or (with smallcaps)

\setacronymstyle{footnote-sc}

or (with smaller)

\setacronymstyle{footnote-sm}

or (with description)

\setacronymstyle{footnote-desc}

or (with smallcaps and description)

\setacronymstyle{footnote-sc-desc}

8 1B (B L0 LB

or (with smaller and description)

129

2. Package Options

\setacronymstyle{footnote-sm-desc}

ON-

dua Deprecated

This option changed the definition of \newacronym so that acronyms are always expanded.
This option may be replaced by:

\setacronymstyle{dua}

or (withdescription)

\setacronymstyle{dua-desc}

8 LB

2.9. Other Options

Other available options that don’t fit any of the above categories are described below.

0

accsupp

Only available with glossaries—extra, this option loads the glossaries—accsupp package, which
needs to be loaded either before glossaries—extra or while glossaries—extra is loaded to ensure
both packages are properly integrated.

=N

| E——

prefix

Only available with glossaries—extra, this option loads the glossaries—prefix package.

(@

nomissingglstext=(boolean) default: true; initial: false

This option may be used to suppress the boilerplate text generated by \printglossary
if the indexing file is missing.

-—
—

Sa—
mfirstuc=(value) initial: unexpanded

The value may be either expanded or unexpanded and performs the same function
as mfirstuc’s expanded and unexpanded package options. Note that there’s no value
corresponding to mfirstuc’s other package option.

130

2. Package Options

The defaultismf i r st uc=unexpanded to safeguard against glossary styles that convert
the description to sentence case. With older versions of mfirstuc (pre v2.08), fragile commands
in the description would not have been affected by the case change, but now, if the entire de-
scription is passed to \MFUsentencecase, it will be expanded, which could break existing
documents.

(@]

=
As from glossaries v4.58, the mf i r st uc option will redefine \glsmakefirstuc

as a long command to allow paragraph breaks.

=i
compatible-2.07 Deprecated

Compatibility mode for old documents created using version 2.07 or below. This option is
now only available with rollback (see §1.1).
[=
L=

compatible-3.07 Deprecated

Compatibility mode for old documents created using version 3.07 or below. This option is now
only available with rollback (see §1.1).
(=
Ul

kernelglossredefs=(value) default: true; initial: false

As a legacy from the precursor glossary package, the standard glossary commands provided
by the KTEX kernel (\makeglossary and \glossary) are redefined in terms of the
glossaries package’s commands. However, they were never documented in this user manual,
and the conversion guide (“Upgrading from the glossary package to the glossaries package”
(glossary2glossaries.pdf)) explicitly discourages their use.

The redefinitions of these commands was removed in v4.10, but unfortunately it turned out
that some packages had hacked the internal commands provided by glossaries and no longer
worked when they were removed, so they were restored in v4.41 with this option to undo the
effect with kernelglossredefs=true as the default. As from v4.50, the default is
now kernelglossredefs=false.

(&]

| S

kernelglossredefs=false

Don’t redefine \glossary and \makeglossary. If they have been previously redefined
by kernelglossredefs their original definitions (at the time glossaries was loaded) will
be restored.

131

2. Package Options

3

kernelglossredefs=true

Redefine \glossary and \makeglossary, but their use will trigger warnings.

3

kernelglossredefs=nowarn

Redefine \glossary and \makeglossary without any warnings.

The only glossary-related commands provided by the ISTEX kernel are \makeglossary
and \glossary. Other packages or classes may provide additional glossary-related com-
mands or environments that conflict with glossaries (such as \printglossary and the-
glossary). These non-kernel commands aren’t affected by this package option, and you will have
to find some way to resolve the conflict if you require both glossary mechanisms. (The glossaries
package will override the existing definitions of \printglossary and theglossary.)

In general, if possible, it’s best to stick with just one package that provides a glossary mecha-
nism. (The glossaries package does check for the doc package and patches \Print Changes.)

2.10. Setting Options After the Package is Loaded

Some of the options described above may also be set after the glossaries package has been loaded
using

X

\setupglossaries/ (options)}

The following package options can’t be used in \setupglossaries: xindy, xindy-
gloss,xindynoglsnumbers,makeindex,nolong,nosuper,nolist,notree,
nostyles,nomain,compatible-2.07,translate,notranslate, languages,
acronym. These options have to be set while the package is loading, except for the xindy
sub-options which can be set using commands like \G1sSetXdyLanguage (see §14 for

further details).

(i]
=
If you need to use this command, use it as soon as possible after loading glossaries other-

wise you might end up using it too late for the change to take effect. If you try changing
the sort option after you have started to define entries, you may get unexpected results.

[glossaries—extra

With glossaries—extra, use \glossariesextrasetup instead.

132

3. Setting Up

In the preamble you need to indicate which method you want to use to generate the glossary (or
glossaries). The available options with both glossaries and glossaries—extra are summarized in
§1.3. This chapter documents Options 1, 2 and 3, which are provided by the base package. See
the glossaries—extra and bib2gl s manuals for the full documentation of the other options.

If you don’t need to display any glossaries, for example, if you are just using the glossaries
package to enable consistent formatting, then skip ahead to §4.

3.1. Option 1

The command

\makenoidxglossaries

must be placed in the document preamble. This sets up the internal commands required to make
Option 1 work. If you omit \makenoidxglossaries none of the glossaries will be
displayed.

3.2. Options 2 and 3

The command

\makeglossaries

must be placed in the document preamble in order to create the customised makeindex
(1st)or xindy (xdy) style file (for Options 2 or 3, respectively) and to ensure that glossary
entries are written to the appropriate output files. If you omit \makeglossaries none of
the indexing files will be created.

[glossaries—extra]

If you are using glossaries—extra, \makeglossaries has an optional argument that
allows you to have a hybrid of Options 1 or 2 or Options 1 or 3. See glossaries—extra
manual for further details.

133

3. Setting Up

[i
=
Note that some of the commands provided by the glossaries package must not be used

after \makeglossaries asthey are required when creating the customised style file.
If you attempt to use those commands after \makeglossaries you will generate
an error. Similarly, there are some commands that must not be used before \make—
glossaries because they require the associated indexing files to be open, if those files
should be created. These may not necessarily generate an error or warning as a different
indexing option may be chosen that doesn’t require those files (such as Options 5 or 6).

The \makeglossaries command internally uses:

\writeist

to create the custom makeindex/xindy style file. This command disables itself by setting
itself to \ relax so that it can only be used once. In general, there should be no reason to use
or alter this command.

The default name for the customised style file is given by \ jobname . ist (Option 2) or
\ jobname . xdy (Option 3). This name may be changed using:

b §
\setStyleFile{(name)}
where (name) is the name of the style file without the extension.
There is a hook near the end of \writeist that can be set with:
b §

\GlsSetWriteIstHook{(code)}

The (code) will be performed while the style file is still open, which allows additional content to
be added to it. The associated write register is:

X

\glswrite

Note that this register is defined by \writeist to prevent an unnecessary write register from
being created in the event that neither makeindex nor xindy is required.

If you use the \G1lsSetWriteIstHook hook to write extra information to the style file,
make sure you use the appropriate syntax for the desired indexing application. For example, with
makeindex:

B

\GlsSetWriteIstHook{$%
\write\glswrite{page_precedence "arnAR"}%
\write\glswrite{line_max 80}%

134

3. Setting Up

}

This changes the page precedence and the maximum line length used by makeindex.
Remember that if you switch to xindy, this will no longer be valid code.
You can suppress the creation of the customised x indy or makeindex style file using:

X

\noist

This is provided in the event that you want to supply your own customized style file that can’t
be replicated with the available options and commands provided by the glossaries package.
This command sets \writeist to \relax (making it do nothing) but will also update
the xindy attribute list if applicable.

If you have a custom xdy file created when using glossaries version 2.07 (2010-0710) or
below, you will need to use rollback and the compatible—2.07 package option with it.
However, that is now so dated and the ITEX kernel has changed significantly since that time
that you may need to use a legacy distribution (see Legacy Documents and TeX Live Docker
Images').

Each glossary entry is assigned a number list that lists all the locations in the document where
that entry was used. By default, the location refers to the page number but this may be overridden
using the counter package option. The default form of the location number assumes a full
stop compositor (for example, 1.2), but if your location numbers use a different compositor (for
example, 1-2) you need to set this using

X

\glsSetCompositor{{character)}

{symbol} For example:

B

\glsSetCompositor{-}

This command must not be used after \makeglossaries. Note that withmakeindex,
any locations with the wrong compositor (or one that hasn’t been correctly identified with \ g1 s-
SetCompositor) will cause makeindex to reject the location with an invalid number/
digit message. As from v4.50, makeglossaries will check for this message and attempt
a correction, but this can result in an incorrectly formatted location in the number list. See the
information about makeglossaries’s —e switch in §1.6.1 for further details.

An invalid page number will also cause xindy to fail with a “did not match any location-
class” warning. This is also something that makeglossaries will check for and will pro-
vided diagnostic information, but it won’t attempt to make any correction.

If you use Option 3, you can have a different compositor for page numbers starting with an
upper case alphabetical character using:

'dickimaw-books.com/blog/legacy—documents—and-tex-live-docker—images

135

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

3. Setting Up

\glsSetAlphaCompositor{(character)}

This command is only available with xindy. For example, if you want number lists containing
a mixture of A-1 and 2.3 style formats, then do:

=

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See §12 for further information about number lists.

136

4. Defining Glossary Entries

[bib2gls]
If you want to use bib2gls, entries must be defined in bib files using the syntax
described in the bib2gls user manual.

Acronyms are covered in §6 but they use the same underlying mechanism as all the other
glossary entries, so it’s a good idea to read this chapter first. The keys provided for \new-
glossaryentry can also be used in the optional argument of \newacronym, although
some of them, such as £i1rst and plural, interfere with the acronym styles.

All glossary entries must be defined before they are used, so it is better to define them in the
document preamble to ensure this. In fact, some commands such as \ longnewglossary-
entry may only be used in the preamble. See §4.8 for a discussion of the problems with
defining entries within the document instead of in the preamble. (The glossaries—extra package
has an option that provides a restricted form of document definitions that avoids some of the
issues discussed in §4.8.)

(]
=
Option 1 enforces the preamble-only restrictionon \newglossaryentry. Option4

requires that definitions are provided in b 1 b format. Options 5 and 6 work best with either
preamble-only definitions or the use of the glossaries—extra package option docde £=
restricted.

J

Bear in mind that with docdef=restricted, the entries must be defined before any
entries are used, including when they are displayed in the glossary (for example, with \print-
unsrtglossary) or where they appear in the table of contents or list of floats. This is
essentially the same problem as defining a robust command mid-document and using it in a
section title or caption.

Only those entries that are indexed in the document (using any of the commands described in
§5.1, §10 or §11) will appear in the glossary. See §8 to find out how to display the glossary.

New glossary entries are defined using the command:

X

\newglossaryentry/{ (entry-label) } { (key=value list) }

This is a short command, so values in (key=value list) can’t contain any paragraph breaks. Take
care to enclose values containing any commas (,) or equal signs (=) with braces to hide them
from the (key)=(value) list parser.

If you have a long description that needs to span multiple paragraphs, use the following instead:

137

4. Defining Glossary Entries

\longnewglossaryentry{(entry-label)} { (key=value list) } { (description) }

Note that this command may only be used in the preamble (regardless of docdef).

A

[Be careful of unwanted spaces.

J

\longnewglossaryentry will remove trailing spaces in the description (via \un-
skip) but won’t remove leading spaces. This command also appends \nopostdesc to
the end of the description, which suppresses the post-description hook (since the terminating
punctuation is more likely to be included in a multi-paragraph description). The glossaries—extra
package provides a starred version of \longnewglossaryentry that doesn’t append
either \unskipor \nopostdesc.

There are also commands that will only define the entry if it hasn’t already been defined:

X
\provideglossaryentry{ (entry-label)} { (key=value list) }
and
X
\longprovideglossaryentry{(entry-label)} { (key=value
list) } { (description) }

(These are both preamble-only commands.)

For all the above commands, the first argument, (entry-label), must be a unique label with
which to identify this entry. This can’t contain any non-expandable or fragile commands.
The reason for this restriction is that the label is used to construct internal commands that store
the associated information (similarly to commands like \ 1 albe 1) and therefore must be able to
expand to a valid control sequence name. With modern I5IgX kernels, you should now be able
to use UTF-8 characters in the label.

Be careful of babel’s options that change certain punctuation characters, such as colon (:)
or double-quote ("), to active characters.

The second argument, (key=value list), is a (key)=(value) list that supplies the relevant infor-
mation about this entry. There are two required fields: description and either name or
parent. The description is set in the third argument of \ longnewglossaryentry
and \ longprovideglossaryentry. Withthe other commandsit’ssetviathe description
key.

As is typical with (key)=(value) lists, values that contain a comma (,) or equal sign (=)
must be enclosed in braces. Available fields are listed below. Additional fields are provided by

138

4. Defining Glossary Entries

the supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) and also by
glossaries—extra. You can also define your own custom keys (see §4.3).
[=

s

name-= { (fext) }

The name of the entry (as it will appear in the glossary). If this key is omitted and the parent
key is supplied, this value will be the same as the parent’s name.

[i
=
If the name key contains any commands, you must also use the sort key (described

below) if you intend sorting the entries alphabetically with Options 1, 2 or 3, otherwise
the entries can’t be sorted correctly.

description={(text)}

A brief description of this term (to appear in the glossary). Within this value, you can use:

7

\nopostdesc

to suppress the description terminator for this entry. For example, if this entry is a parent entry
that doesn’t require a description, you can do description={\nopostdesc}. If you
want a paragraph break in the description use:

X

\glspar

or, better, use \longnewglossaryentry. However, note that not all glossary styles
support multi-line descriptions. If you are using one of the tabular-like glossary styles that permit
multi-line descriptions and you really need an explicit line break, use \newline not \ \ (but
in general, avoid \ \ outside of tabular contexts anyway and use a ragged style if you are having
problems with line breaks in a narrow column).

[glossaries—extra

With glossaries—extra, use \glsxtrnopostpunc instead of \nopostdesc to
suppress the post-description punctuation.

parent=(parent-label)

This key establishes the entry’s hierarchical level. The value must be the label of the parent
entry (not the name, although they may be the same). The (parent-label) value must match the
(entry-label) used when the parent entry was defined. See §4.5 for further details.

139

4. Defining Glossary Entries

[i
=
The parent entry must be defined before it’s referenced in the parent key of another
entry.

(=]

==

descriptionplural={ (fext)}

The plural form of the description, if required. If omitted, the value is set to the same as the
description key.

text={(text)}

How this entry will appear in the document text when using \g1s on subsequent use. If this
field is omitted, the value of the name key is used.

This key is automatically set by \newacronym. Although it is possible to override it by
using t ext in the optional argument of \newacronym, it will interfere with the acronym
style and cause unexpected results.

[(=]

s

first={(first)}

How the entry will appear in the document text on first use with \gls. If this field is omitted,
the value of the text key is used. Note that if you use \glspl, \Glspl, \GLSpl,
\glsdisp before using \gls, the first value won’t be used with \gls.

You may prefer to use acronyms (§6) or the abbreviations or the category post-link hook
(\glsdefpostlink) provided by glossaries—extra if you would like to automatically ap-
pend content on first use in a consistent manner. See, for example, Gallery: Units (glossaries-
extra.sty).!

Although it is possible to use £irst in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. =

==

plural={(text)}

How the entry will appear in the document text when using \ g1 spl on subsequent use. If this
field is omitted, the value is obtained by appending \glspluralsuffix to the value of
the text field.

Although it is possible to use plural in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. Use shortplural instead,
if the default value is inappropriate.

'dickimaw-books.com/gallery/index.php?label=sample-units

140

https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units

4. Defining Glossary Entries

firstplural={(text)}

How the entry will appear in the document text on first use with \ g1 sp1. If this field is omitted,
the value is obtained from the plural key, if the £irst key is omitted, or by appending
\glspluralsuffix to the value of the first field, if the first field is present.
Note that if youuse \gls, \G1ls, \GLS, \glsdisp before using \glspl,the first-
plural value won’t be used with \glspl.

Although itis possible touse £ i rstplural inthe optional argument of \newacronym,
it can interfere with the acronym style and cause unexpected results. Use shortplural and
longplural instead, if the default value is inappropriate.

(@]

=
Prior to version 1.13, the default value of firstplural was always taken by ap-

[1P%2)

pending “s” to the £1rst key, which meant that you had to specify both plural and
firstplural, evenif you hadn’t used the £1rst key.

symbol={ (symbol) } initial: \relax

This field is provided to allow the user to specify an associated symbol. If omitted, the value is
set to \ relax. Note that not all glossary styles display the symbol.

symbolplural=/{ (symbol plural) }

This is the plural form of the symbol. If omitted, the value is set to the same as the symbol
key.

=
sort=(value) initial: (entry name)

This value indicates the text to be used by the sort comparator when ordering all the glossary
entries. If omitted, the value is given by the name field unless one of the package options sort
=def and sort=use have been used. With Option 2 it’s best to use the sort key if the
name contains commands (for example, \ensuremath{\alpha}) and with Options 2
and 3, it’s strongly recommended as the indexing may fail if you don’t (see below).

You can also override the sort key by redefining \gl sprestandardsort (see §2.5).

[bib2gls |

The sort key shouldn’t be used with b1b2gls. It has a system of fallbacks that allow
different types of entries to obtain the sort value from the most relevant field. See the
bib2gls manual for further details, and see also bib2g1ls gallery: sorting.

141

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

4. Defining Glossary Entries

“dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

Option 1 by default strips the standard I£TEX accents (that is, accents generated by core ISTEX
commands) from the name key when it sets the sort key. So with Option 1:

=

\newglossaryentry{elite}({
name={\"'elite},
description={select group of people}

}

This is equivalent to:

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}
sort={elite}

}

Unless you use the package option sanitizesort=true,in which case it’s equivalent to:

\newglossaryentry{elite}{
name={\"'elite},
description={select group of people}
sort={\'elite},

}

This will place the entry before the “A” letter group since the sort value starts with a symbol (a
literal backslash \). Note that Option 1 shouldn’t be used with UTF-8 characters. With old IKTEX
kernels, it was able to convert a UTF-8 character, such as &, to an ASCII equivalent but this is no
longer possible.

With Options 2 and 3, the default value of sort will either be set to the name key (if
sanitizesort=true)oritwillsetitto the expansion of the name key (if sanitize-
sort=false).

(i]
=
Take care with xindy (Option 3): if you have entries with the same sort value they

will be treated as the same entry. If you use xindy and aren’t using the de f or use sort
methods, always use the sort key for entries where the name just consists of commands
(for example name={\alpha}l).

142

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

4. Defining Glossary Entries

Take care if you use Option 1 and the name contains fragile commands. You will
either need to explicitly set the sort keyoruse the sanitizesort=true package
option (unless you use the de f or use sort methods).

[=
=
type=(glossary-label) initial: \glsdefaulttype

This specifies the label of the glossary in which this entry belongs. If omitted, the default glossary
identified by \glsdefaulttype is assumed unless \newacronym is used (see §6).
Six keys are provided for any additional information the user may want to specify. (For ex-
ample, an associated dimension or an alternative plural or some other grammatical construct.)
Alternatively, you can add new keys using \glsaddkey or \glsaddstoragekey (see

§4.3).
[=
Ul
userl={(text)}
The first user key.
[=
L=
user2={(text) }
The second user key.
=
user3={ (text) }
The third user key.
ULl
userd={(text)}
The fourth user key.
[=
Ul
user5={(text)}
The fifth user key.
[=
Ul
user6={ (text) }
The sixth user key.
[=
L=
nonumberlist={(boolean) } default: £ rue; initial: false

If the value is missing or is € rue, this will suppress the number list just for this entry. Con-

143

4. Defining Glossary Entries

versely, if you have used the package option nonumberlist=true, you can activate the
number list just for this entry with nonumberlist={false}. (See §12.)

This key works by adding \gl snonextpages (nonumberlist={true})or\gls-
nextpages (nonumberlist={false}) to the indexing information for Options 2
and 3. Note that this means that if the entry is added to the glossary simply because it has an
indexed descendent (and has not been indexed itself) then the first indexed sub-entry that follows
will have its number list suppressed instead.

With Option 1, this key saves the appropriate command in the prenumber1i st internal
field, which is used by \glsnoidxprenumberlist.

=
see={ [(tag)] (xr-list) }

This key essentially provides a convenient shortcut that performs

\glssee [(tag)] { (entry-label) } { (xr-list) }

after the entry has been defined. (See §11.) It was originally designed for synonyms that may
not occur in the document text but needed to be included in the glossary in order to redirect the
reader. Note that it doesn’t index the cross-referenced entry (or entries) as that would interfere
with their number lists.
[i
=
Using the see key will automatically add this entry to the glossary, but will not automat-

ically add the cross-referenced entry.

For example:

\newglossaryentry{courgette}{name={courgette},
description={variety of small marrow}}

\newglossaryentry{zucchini}{name={zucchini},
description={ (North American)},
see={courgette}}

This defines two entries (courgette and zucchini) and automatically adds a cross-reference from
zucchini to courgette. (That is, it adds “see courgette” to zucchini’s number list.) This doesn’t
automatically index courgette since this would create an unwanted location in courgette’s number
list. (Page 1, if the definitions occur in the preamble.)

Note that while it’s possible to put the cross-reference in the description instead, for example:

144

4. Defining Glossary Entries

=

\newglossaryentry{zucchini}{name={zucchini},
description={ (North American) see \gls{courgette}}

}

this won’t index the zucchini entry, so if zucchini isn’t indexed elsewhere (with commands like
\gls or \glsadd) then it won’t appear in the glossary even if courgette does.

The referenced entry should be supplied as the value to this key. If you want to override the
“see” tag, you can supply the new tag in square brackets before the label. For example see=
{[see also]{anotherlabel}}.

A

If you have suppressed the number list, the cross-referencing information won’t appear in
the glossary, as it forms part of the number list.

You can override this for individual glossary entries using nonumberlist={false}.
Alternatively, you can use the seeautonumber1ist package option. For further details,
see §11.

[i
=
For Options 2 and 3, \makeglossaries must be used before any occurrence of

\newglossaryentry that contains the see key.

Since it’s useful to suppress the indexing while working on a draft document, consider us-
ing the seenoindex package option to warn about or ignore the see key while \make-
glossaries is commented out.

If you use the see key, you may want to consider using the glossaries—extra package which
additionally providesa seealsoand a 11ias key. If you want to avoid the automatic indexing
triggered by the see key, consider using Option 4. See also the FAQ item Why does the see
key automatically index the entry??

[bib2 gls]
The analogous bib2gls see, seealso and alias fields have a slightly different
meaning. The select ion resource option determines the behaviour.

seealso={ (xr-list) }

This key is only available with glossaries—extra and is similar to see but it doesn’t allow for
the optional tag. The glossaries—extra package provides \seealsoname and seealso
={xr—-1ist} is essentially like see={ [\seealsoname] (xr-list)} (Options 3 and 4

’dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

145

https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

4. Defining Glossary Entries

may treat these differently).

alias={(xr-label)}

This key is only available with glossaries—extra and is another form of cross-referencing. An en-
try can be aliased to another entry with a1 ias={other—1label }. This behaves like sce
={other—-1label} butalso alters the behaviour of commands like \ g1 s so that they index
the entry given by (label) instead of the original entry. (See, for example, Gallery: Aliases.?)

[bib2gls |

More variations with the a1 i a s key are available with bib2gls.

counter={(counter-name) }

This key will set the default location counter for the given entry. This will override the counter
assigned to the entry’s glossary in the final optional argument of \newglossary (if pro-
vided) and the counter identified by the counter package option. The location counter can
be overridden by the count e r option when using the \ g1 s-like and \ gl stext-like com-
mands.

-—
—a

Sa—
category=(category-label) initial: general

This key is only available with glossaries—extra and is used to assign a category to the entry. The
value should be a label that can be used to identify the category. See glossaries—extra manual
for further details.

The following keys are reserved for \newacronym (see §6) and also for \newabbreviation
(see the glossaries—extra manual): 1ong, longplural, short and shortplural.
Youcanuse longplural and shortplural inthe optional argument of \newacronym
(or \newabbreviation) to override the defaults, but don’t explicitly use the 1ong or
short keys as that may interfere with acronym style (or abbreviation style).

[bib2gls |

There are also special internal field names used by bib2gls. See the bib2gls man-
ual for further details.

The supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) provide
additional keys.

3dickimaw-books.com/gallery/index.php?label=aliases

146

https://www.dickimaw-books.com/gallery/index.php?label=aliases
https://www.dickimaw-books.com/gallery/index.php?label=aliases

4. Defining Glossary Entries

(i]
=
Avoid using any of the \gls-like or \glstext-like commands within the text,
first, short or Long keys (or their plural equivalent) or any other key that you
plan to access through those commands. (For example, the symbo 1 key if you intend to
use \glssymbol.) Otherwise you can up with nested links, which can cause compli-
cations. You can use them within the value of keys that won’t be accessed through those
commands. For example, the description key if you don’t use \glsdesc. Ad-
ditionally, they’ll confuse the formatting placeholder commands, such as \glslabel.
The glossaries—extra package provides \ g1 sxt rp for this type of situation.

With older IXTEX kernels and pre-2.08 versions of mfirstuc, if the name starts with non-Latin
character, you need to group the character, otherwise it will cause a problem for commands like
\Gls and \G1lspl. For example:

=

o

% mfirstuc v2.07
\newglossaryentry{elite}{name={{\'e}lite},
description={select group or class}}

Note that the same applies with inputenc:

(¢}

% mfirstuc v2.07
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This doesn’t apply for XgIATEX or LualfTEX documents or with mfirstuc v2.08+.

(e}

% mfirstuc v2.08
\newglossaryentry{elite}{name={élite},
description={select group or class}}

See the mfirstuc manual for further details.

Note that in the above UTF-8 examples, you will also need to supply the sort key if you
are using Options 1 or 2 whereas x 1 ndy (Option 3) is usually able to sort non-Latin characters
correctly.

4.1. Plurals

You may have noticed from above that you can specify the plural form when you define an entry.
If you omit this, the plural will be obtained by appending:

147

4. Defining Glossary Entries

X

\glspluralsuffix initial: s

to the singular form. This command may expand when the entry is defined, if expansion is on
for the relevant keys, or may not expand until the entry is referenced, if expansion is off or if the
suffix has been hidden inside non-expanding context (which can happen when defining acronyms
or abbreviations).

For example:

\newglossaryentry{cow}{name={cow},description=
{a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form is “cows”. However, if you
are writing in archaic English, you may want to use “kine” as the plural form, in which case you
would have to do:

=

\newglossaryentry{cow}{name={cow},plural={kine},
description=
{a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for a given term) then use the
plural key for one of them and one of the user keys to specify the other plural form. For
example:

,

\newglossaryentry{cow}{
name={cow},
description=
{a fully grown female of any bovine animal
(plural cows, archaic plural kine)},
userl={kine}}

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow} to produce
“kine”. You can, of course, define an easy to remember synonym. For example:

Ei

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second plural. (Be careful
with using \ let as it doesn’t check if the command already exists.)

148

4. Defining Glossary Entries

Alternatively, you can define your own keys using \glsaddkey, described in §4.3 (or
simply use \glsdisp or \glslink with the appropriate text).

If you are using a language that usually forms plurals by appending a different letter, or se-
quence of letters, you can redefine \glspluralsuffix as required. However, this must
be done before the entries are defined and is unreliable for multilingual documents. For languages
that don’t form plurals by simply appending a suffix, all the plural forms must be specified using
the plural key (and the firstplural key where necessary).

4.2. Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}{userl}
\newcommand*{\edkey}{user2}

\newcommand* {\newword} [3][]1{%
\newglossaryentry{#2}{%
name={#2},%
description={#3},%
\edkey={#2ed}, %
\ingkey={#2ing}, #1%
H}

With the above definitions, I can now define terms like this:

\newword{play}

{to take part in activities for enjoyment}
\newword[\edkey={ran}, \ingkey={running}] {run}
{to move fast using

the legs}

.

and use them in the text:

Peter is \glsing{play} in the park today.

Jane \glsd{play} in the park yesterday.

149

4. Defining Glossary Entries

Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \ gl saddkey, described below in §4.3.
It may, however, be simpler just to use \glslink or \glsdisp with the appropriate link
text.

4.3. Additional Keys

You can define your own custom keys using the commands described in this section. There are
two types of keys: those for use within the document and those to store information used behind
the scenes by other commands.

For example, if you want to add a key that indicates the associated unit for a term, you might
want to reference this unit in your document. In this case use \glsaddkey described in
§4.3.1. If, on the other hand, you want to add a key to indicate to a glossary style or acronym
style that this entry should be formatted differently to other entries, then you can use \gls-
addstoragekey described in §4.3.2.

In both cases, a new command (no link cs) will be defined that can be used to access the value
of this key (analogous to commands such as \glsentrytext). This can be used in an
expandable context (provided any fragile commands stored in the key have been protected). The
new keys must be added using \glsaddkey or \glsaddstoragekey before glossary
entries are defined.

4.3.1. Document Keys

A custom key that can be used in the document is defined using:

\glsaddkey/{ (key)} { (default value) } { (no link cs) } { (no link ucfirst cs) } { (link
cs) } { {link ucfirst cs) } { (link allcaps cs) }

where the arguments are as follows:

(key) isthenew key tousein \newglossaryentry (orsimilar commands suchas \ 1ong-
newglossaryentry);

(default value) is the default value to use if this key isn’t used in an entry definition (this may ref-
erence the current entry label via \glslabel, but you will have to switch on expansion
via the starred version of \ gl saddkey and protect fragile commands);

(no link cs) is the control sequence to use analogous to commands like \glsentrytext;

(no link ucfirst cs) is the control sequence to use analogous to commands like \Glsentry-
text;

(link cs) is the control sequence to use analogous to commands like \glstext;

150

4. Defining Glossary Entries

(link ucfirst cs) is the control sequence to use analogous to commands like \Glstext;

(link allcaps cs) is the control sequence to use analogous to commands like \GLStext.

The starred version of \ g1 saddkey switches on expansion for this key. The unstarred version

doesn’t override the current expansion setting.

Example 13: Defining Custom Keys

Suppose I want to define two new keys, ed and ing, that default to the entry text followed
by “ed” and “ing”, respectively. The default value will need expanding in both cases, so I need

to use the starred form:

% Define "ed" key:

\glsaddkey*
{ed}% key
{\glsentrytext{\glslabel}ed}% default value
{\glsentryed}% command analogous to \glsentrytext
{\Glsentryed}% command analogous to \Glsentrytext
{\glsed}% command analogous to \glstext
{\Glsed}% command analogous to \Glstext
{\GLSed}% command analogous to \GLStext

% Define "ing" key:

\glsaddkey*
{ing}% key
{\glsentrytext{\glslabel}ing}% default wvalue
{\glsentrying}% command analogous to \glsentrytext
{\Glsentrying}% command analogous to \Glsentrytext
{\glsing}% command analogous to \glstext
{\Glsing}% command analogous to \Glstext
{\GLSing}% command analogous to \GLStext

Now I can define some entries:

% No need to override defaults for this entry:
\newglossaryentry{jump}{name={jump},description={}}

% Need to override defaults on these entries:
\newglossaryentry{run}{name={run},

ed={ran},

ing={running},

151

4. Defining Glossary Entries

description={}}

\newglossaryentry{waddle}{name={waddle},
ed={waddled},
ing={waddling},
description={}}

These entries can later be used in the document:

The dog \glsed{jump} over the duck.
The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

For a complete document, see the sample file sample—newkeys.tex.

4.3.2. Storage Keys

A custom key that can be used for simply storing information is defined using:

\glsaddstoragekey{(key)} { (default value) } { (no link cs) }

where the arguments are as the first three arguments of \glsaddkey, described above in
§4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define the additional
commands. You can access or update the value of your new field using the commands described
in §15.6.

Example 14: Defining Custom Storage Key (Acronyms and Initialisms)

Suppose I want to define acronyms (an abbreviation that is pronounced as a word) and other
forms of abbreviations, such as initialisms, but I want them all in the same glossary and I want the
acronyms on first use to be displayed with the short form followed by the long form in parentheses,
but the opposite way round for other forms of abbreviations. (The glossaries—extra package
provides a simpler way of achieving this.)

Here I can define a new key that determines whether the term is actually an acronym rather
than some other form of abbreviation. I'm going to call this key abbrtype (since type
already exists):

152

4. Defining Glossary Entries

\glsaddstoragekey
{abbrtype}% key/field name
{word}% default value if not explicitly set
{\abbrtype}

[e)

% custom command to access the value if required

Now I can define a style that looks up the value of this new key to determine how to display

the full form:

\newacronymstyle
{mystyle}% style name
{% Use the generic display
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgen—
entryfmt}%
}%
{% Put the long form in the description
\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%
For the full format, test the value of the "abbrtj
If it's set to "word" put the short form first wit
% the long form in brackets.
\renewcommand*{\genacrfullformat}[2]{%
\ifglsfieldeg{##1}{abbrtype}{word}
{% is a proper acronym
\protect\firstacronymfont{\glsentryshort{##1}}
##2\space
(\glsentrylong{##1})%

o\°

o\°

% 1s another form of abbreviation
\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}

-
-
o\°

o\° —~~
o\

t
% sentence case version:
\renewcommand*{\Genacrfullformat}[2]{%
\ifglsfieldeg{##1}{abbrtype}{word}
{% 1is a proper acronym
\protect\firstacronymfont{\Glsentryshort {##1}}
##2\space

zpe "
h

153

key.

4. Defining Glossary Entries

(\glsentrylong{##1})%

t

{% is another form of abbreviation

\Glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort {##1}

—
-
o\°

o\

o0 v~

}
% plural
\renewcommand*{\genplacrfullformat} [2]{%
\ifglsfieldeqg{##1}{abbrtype}{word}%
{% is a proper acronym
\protect\firstacronymfont{\glsentryshortpl
{##1} }##2\space
(\glsentrylong{##1})%

o\

}
{% is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl
{##1}}1) %
}%

o\°

t
% plural and sentence case
\renewcommand*{\Genplacrfullformat} [2]{%
\ifglsfieldeqg{##1}{abbrtype}{word}%
{% 1is a proper acronym
\protect\firstacronymfont{\Glsentryshortpl
{##1} }##2\space
(\glsentrylong{##1})%

o\

t
{% is another form of abbreviation
\Glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl
{##1}1}) %
%
s
% Just use the short form as the name part in the gl
\renewcommand*{\acronymentry}[1]{%
\acronymfont{\glsentryshort{##1}}}%
Sort by the short form:
renewcommand*{\acronymsort} [2] {##1}%
% Just use the surrounding font for the short form:

~ oP°

154

ssary:

4. Defining Glossary Entries

\renewcommand*{\acronymfont} [1]{##1}%
% Same for first use:
\renewcommand*{\firstacronymfont}[1] {\acronymfont
{##1}}%
% Default plural suffix if the plural isn't explicitly set

\renewcommand*{\acrpluralsuffix}{\glspluralsuffix}

o\

}

Remember that the new style needs to be set before defining any terms:

=

\setacronymstyle{mystyle}

Since it may be a bit confusing to use \newacronym for something that’s not technically
an acronym, let’s define a new command for initialisms:

=

\newcommand*{\newinitialism}[4][]{%
\newacronym[abbrtype=initialism, #1]{#2}{#3}{#4}%
}

Now the entries can all be defined:

\newacronym{radar}{radar}

{radio detecting and ranging}
\newacronym{laser}{laser}

{light amplification by stimulated

emission of radiation}
\newacronym{scuba}{scuba}{self-

contained underwater breathing

apparatus}

\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM}{automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and ranging)” but \gls
{dsp} will produce “DSP (digital signal processing)”.
For a complete document, see the sample file sample—storage—abbr.tex

In the above example, if \newglossaryentry is explicitly used (instead of through
\newacronym) the abbrtype key will be set to its default value of “word” but the \ i f-
glshaslong testin the custom acronym style will be false (since the 1 ong key hasn’t been

155

4. Defining Glossary Entries

set) so the display style will switch to that given by \glsgenentryfmt and they’ll be no
test performed on the abbrtype field.

Example 15: Defining Custom Storage Key (Acronyms and Non-
Acronyms with Descriptions)

The previous example can be modified if the description also needs to be provided.
Here I've changed “word” to “acronym”:

\glsaddstoragekey
{abbrtype}% key/field name
{acronym}% default value 1f not explicitly set
{\abbrtype}

[e)

% custom command to access the value if required

This may seem a little odd for non-abbreviated entries that are defined using \newglossary-
entry directly, but \ 1 fglshaslong can be used to determine whether or not to reference
the value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to specify a description.
In the previous example, the line:

\renewcommand*{\GenericAcronymFields}{$%
description={\the\glslongtok}}%

needs to be changed to:

\renewcommand*{\GenericAcronymFields}{}%

- R

Additionally, to accommodate the change in the default value of the abbrtype key, all in-
stances of

\ifglsfieldeg{##1}{abbrtype}{word}

need to be changed to:

\ifglsfieldeg{##1}{abbrtype}{acronym}

8 LB

Once this new style has been set, the new acronyms can be defined using the optional argument
to set the description:

156

4. Defining Glossary Entries

\newacronym|[description=

{system for detecting the position and

speed of aircraft, ships, etc}l{radar}{radar}
{radio detecting

and ranging}

No change is required for the definition of \newinitiali sm but again the optional ar-
gument is required to set the description:

\newinitialism[description=
{mathematical manipulation of an
information signal}]{dsp}{DSP}
{digital signal processing}

‘We can also accommodate contractions in a similar manner to the initialisms:

\newcommand* {\newcontraction}[4][]{%
\newacronym[abbrtype=contraction, #1]{#2} {#3}{#4}%
t

The contractions can similarly been defined using this new command:

\newcontraction[description=
{front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

Bl Bl B

Since the custom acronym style just checks if abbrtype is “acronym”, the contractions
will be treated the same as the initialisms, but the style could be modified by a further test of the
abbrtype value if required.

To test regular non-abbreviated entries, I've also defined a simple word:

\newglossaryentry{apple}{name={apple},description=
{a fruit}}

_ B

Now for a new glossary style that provides information about the abbreviation (in addition to
the description):

157

4. Defining Glossary Entries

\newglossarystyle
{mystyle}% style name
{% base it on the "list" style
\setglossarystyle{list}%
\renewcommand*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glstarget{##1}{\glossentryname{##1}}]
\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1}) \space}
{1%
\glossentrydesc{##1}\glspostdescrip—
tion\space ##2}%
}

This uses \ifglshaslong to determine whether or not the term is an abbreviation. (An
alternative is to use \ifglshasshort. The long and short keys are only set for
acronyms/abbreviations.)

If the entry has an short/1 ong value, the full form is supplied in parentheses and \ abbrtype
(defined by \glsaddstoragekey earlier) is used to indicate the type of abbreviation.

With this style set, the “apple” entry is simply displayed in the glossary as:

apple a fruit.
but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) device that creates a
narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an information signal.
(for initalisms) or

fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).
For a complete document, see sample—-storage—abbr-desc.tex.

4.4. Expansion
When you define new glossary entries expansion is performed by default, except for the name,

description,descriptionplural, symbol, symbolplural and sort keys
(these keys all have expansion suppressed via \glssetnoexpandfield).

158

4. Defining Glossary Entries

You can switch expansion on or off for individual keys using:

\glssetexpandfield{ (field)}

or

\glssetnoexpandfield{ (field)}

respectively, where (field) is the internal field label corresponding to the key. In most cases, this
is the same as the name of the key except for those listed in Table 4.1.

Table 4.1.: Key to Field Mappings

Key Field

sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
userl useri
user?2 userii
user3 useriii
user4 useriv
userb userv
usero6 uservi
longplural longpl
shortplural shortpl

Any keys that haven’t had the expansion explicitly set using \glssetexpandfieldor
\glssetnoexpandfield are governed by

X

\glsexpandfields

and

\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch off expansion via
\glsnoexpandfields. (This should be used before you define the entries.)

159

4. Defining Glossary Entries

o

Both \newacronym and \newabbreviation partially suppress expansion of
some keys regardless of the above expansion settings.

4.5. Sub-Entries

A sub-entry is created by setting the parent key. These will normally be sorted so that they are
placed immediately after their parent entry. However, some sort methods aren’t suitable when
there are sub-entries. In particular, sub-entries are problematic with Option 1, and with Option 5
the sub-entries must be defined immediately after their parent entry (rather than at any point after
the parent entry has been defined).

The hierarchical level indicates the sub-entry level. An entry with no parent (a top level entry)
is a hierarchical level O entry. An entry with a parent has a hierarchical level that’s one more than
its parent’s level. The level is calculated when an entry is defined.

(@]

=
The hierarchical level is stored in the 1 eve 1 internal field. It can be accessed using com-

mands like \glsfieldfetch or (with glossaries—extra) \glsxtrusefield,
but neither the level nor the parent values should be altered as it can cause in-
consistencies in the sorting and glossary formatting. The indexing syntax for Options 2
and 3 is generated when the entry is first defined, so it’s too late to change the hierarchy
after that, and bilb2gls obtains the hierarchical information from the bib files and
the resource options. Note, however, that glossaries—extra does allow the ability to lo-
cally alter the level with the 1 eve 1 o f £ set option, which is mainly intended for nested
glossary. See the glossaries—extra manual for further details and also Gallery: Inner or
Nested Glossaries.”

“dickimaw-books.com/gallery/index.php?label=bib2gls-inner

7

There are two different types of sub-entries: those that have the same name as their parent
(homographs, see §4.5.2) and those that establish a hierarchy (see §4.5.1). Both types are con-
sidered hierarchical entries from the point of view of the glossaries package and the indexing
applications, but typically homographs will have the name key obtained from the parent, rather
than have it explicitly set, and have a maximum hierarchical level of 1.

Not all glossary styles support hierarchical entries and may display all the entries in a flat
format. Of the styles that support sub-entries, some display the sub-entry’s name whilst others
don’t. Therefore you need to ensure that you use a suitable style. (See §13 for a list of predefined
glossary styles.) If you want level 1 sub-entries automatically numbered (in glossary styles that
support it) use the subent rycounter package option (see §2.3 for further details).

Note that the parent entry will automatically be added to the glossary if any of its child entries
are used in the document. If the parent entry is not referenced in the document, it will not have a
number list. Note also that make index has a restriction on the maximum hierarchical depth.

160

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

4. Defining Glossary Entries

4.5.1. Hierarchy

To create a glossary with hierarchical divisions, you need to first define the division, which will be
a top level (level 0) entry, and then define the sub-entries using the relevant higher level entry as
the value of the parent key. (In a hierarchical context, a higher level indicates a numerically
smaller level number, so level O is one level higher than level 1.) The top level entry may represent,
for example, a topic or classification. A level 1 entry may represent, for example, a sub-topic or
sub-classification.

Example 16: Hierarchical Divisions — Greek and Roman Mathematical
Symbols

Suppose I want a glossary of mathematical symbols that are divided into Greek letters and
Roman letters. Then I can define the divisions as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentryromanletter{name={Roman letters},
description={\nopostdesc}}

Note that in this example, the top level entries don’t need a description so I have set the de-
scriptions to \nopostdesc. This gives a blank description and suppresses the description
terminator.

I can now define my sub-entries as follows:

,

\newglossaryentry{pi}tname={\ensuremath{\pi}}, sort=
{pi},

description=

{ratio of the circumference of a circle to

the diameter},

parent={greekletter}

\newglossaryentry{C}{name={\ensuremath{C}}, sort={C},
description={Euler's constant},
parent={romanletter}}

For a complete document, see the sample file sampletree.tex.

161

4. Defining Glossary Entries

[glossaries—extra]

If you want to switch to Option 5, you will need to move the definitions of the sub-entries
to immediately after the definition of their parent entry. So, in this case, “pi” needs to be
defined after “greekletter” and before “romanletter”.

4.5.2. Homographs

Sub-entries that have the same name as the parent entry don’t need to have the name key ex-
plicitly set. For example, the word “glossary” can mean a list of technical words or a collection
of glosses. In both cases the plural is “glossaries”. So first define the parent entry:

=

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},
plural={glossaries}}

As in the previous example, the parent entry has no description, so the description terminator
needs to be suppressed using \nopostdesc.
Now define the two different meanings of the word with the parent key set to the above

parent entry label:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},

parent={glossary}}

\newglossaryentry{glossarycol }{
description={collection of glosses},
sort={2},

parent={glossary}}

Note that if I reference the parent entry (for example, \gls{glossary}), the location will
be added to the parent’s number list, whereas if I reference any of the child entries (for example,
\gls{glossarylist}), the location will be added to the child entry’s number list. Note
also that since the sub-entries have the same name, the sort key is required with Option 3
(xindy) and recommended with Option 2 (makeindex). You can use the subentry-
counter package option to automatically number the level 1 child entries in the glossary (if
you use a glossary style that supports it). See §2.3 for further details.

162

4. Defining Glossary Entries

In the above example, the plural form for both of the child entries is the same as the parent
entry, so the plural key was not required for the child entries. However, if the sub-entries
have different plurals, they will need to be specified. For example:

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description=
{cry of approval

(pl. bravos)},

sort={1},

plural={bravos},

parent={bravo}}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl. bravoes)},

sort={2},

plural={bravoes},

parent={bravo}}

For a complete document, see the sample file sample.tex.

4.6. Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

\loadglsentries [(type)] { (filename) }

where (filename) is the name of the file containing all the \newglossaryentry, \long-
newglossaryentry, \newacronym etc commands. The optional argument (rype)
is the name of the glossary to which those entries should belong, for those entries where the
type key has been omitted (or, more specifically, for those entries whose t ype has been set
to \glsdefaulttype, which is what \newglossaryentry uses by default). See
sampleDB. tex for a complete example document.

(o]

=
Commands like \newacronym, \newabbreviation, \newterm, \gls—

xtrnewsymbol and \glsxt rnewnumber all set the t ype key to the appropri-
ate glossary. This means that the (fype) optional argument won’t apply to those commands,
unless they have t ype={\glsdefaulttype}.

163

4. Defining Glossary Entries

This is a preamble-only command. You may also use \input to load the file but don’t
use \include. If you find that your file is becoming unmanageably large, you may want to
consider switching to bib2gls and use an application such as JabRef to manage the entry
definitions.

(i]
=
If you want to use \AtBeginDocument to \ input all your entries automatically

at the start of the document, add the \At BeginDocument command before you load
the glossaries package (and babel, if you are also loading that) to avoid the creation of the
glsdefs file and any associated problems that are caused by defining commands in the
document environment. (See §4.8.) Alternatively, if you are using glossaries—extra, use
the docdef=restricted package option.

Example 17: Loading Entries from Another File

Suppose I have a file called myent ries . tex which contains:

\newglossaryentry{perl}{type={main},
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language},sort={TeX}}

\newglossaryentry{html}{type={\glsdefaulttype},
name=<{html},
description={A mark up language}}

and suppose in my preamble I use the command:

=

\loadglsentries[languages] {myentries}

then this will add the entries “tex” and “html” to the glossary whose type is given by 1l anguages,
but the entry “perl” will be added to the ma in glossary, since it explicitly sets the CLype to
main.

Now suppose I have a file myacronyms . t ex that contains:

[\newacronym{a